Suppr超能文献

集成深度学习与高效神经网络用于糖尿病视网膜病变的准确诊断。

Ensemble deep learning and EfficientNet for accurate diagnosis of diabetic retinopathy.

作者信息

Arora Lakshay, Singh Sunil K, Kumar Sudhakar, Gupta Hardik, Alhalabi Wadee, Arya Varsha, Bansal Shavi, Chui Kwok Tai, Gupta Brij B

机构信息

Department of CSE, Chandigarh College of Engineering and Technology, Panjab University, Chandigarh, India.

Department of Computer Science, Immersive Virtual Reality Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Sci Rep. 2024 Dec 18;14(1):30554. doi: 10.1038/s41598-024-81132-4.

Abstract

Diabetic Retinopathy (DR) stands as a significant global cause of vision impairment, underscoring the critical importance of early detection in mitigating its impact. Addressing this challenge head-on, this study introduces an innovative deep learning framework tailored for DR diagnosis. The proposed framework utilizes the EfficientNetB0 architecture to classify diabetic retinopathy severity levels from retinal images. By harnessing advanced techniques in computer vision and machine learning, the proposed model aims to deliver precise and dependable DR diagnoses. Continuous testing and experimentation shows to the efficiency of the architecture, showcasing promising outcomes that could help in the transformation of both diagnosing and treatment of DR. This framework takes help from the EfficientNet Machine Learning algorithms and employing advanced CNN layering techniques. The dataset utilized in this study is titled 'Diagnosis of Diabetic Retinopathy' and is sourced from Kaggle. It consists of 35,108 retinal images, classified into five categories: No Diabetic Retinopathy (DR), Mild DR, Moderate DR, Severe DR, and Proliferative DR. Through rigorous testing, the framework yields impressive results, boasting an average accuracy of 86.53% and a loss rate of 0.5663. A comparison with alternative approaches underscores the effectiveness of EfficientNet in handling classification tasks for diabetic retinopathy, particularly highlighting its high accuracy and generalizability across DR severity levels. These findings highlight the framework's potential to significantly advance the field of DR diagnosis, given more advanced datasets and more training resources which leads it to be offering clinicians a powerful tool for early intervention and improved patient outcomes.

摘要

糖尿病视网膜病变(DR)是全球视力损害的一个重要原因,凸显了早期检测对于减轻其影响的至关重要性。为了直接应对这一挑战,本研究引入了一种专为DR诊断量身定制的创新深度学习框架。所提出的框架利用EfficientNetB0架构从视网膜图像中对糖尿病视网膜病变的严重程度进行分类。通过利用计算机视觉和机器学习中的先进技术,所提出的模型旨在提供精确且可靠的DR诊断。持续的测试和实验证明了该架构的效率,展示出有前景的结果,这可能有助于改变DR的诊断和治疗方式。该框架借助EfficientNet机器学习算法并采用先进的卷积神经网络(CNN)分层技术。本研究中使用的数据集名为“糖尿病视网膜病变的诊断”,来源于Kaggle。它由35108张视网膜图像组成,分为五类:无糖尿病视网膜病变(DR)、轻度DR、中度DR、重度DR和增殖性DR。通过严格测试,该框架产生了令人印象深刻的结果,平均准确率为86.53%,损失率为0.5663。与其他方法的比较强调了EfficientNet在处理糖尿病视网膜病变分类任务方面的有效性,尤其突出了其在不同DR严重程度水平上的高精度和通用性。这些发现凸显了该框架在显著推进DR诊断领域方面的潜力,鉴于有更先进的数据集和更多的训练资源,这将为临床医生提供一个用于早期干预和改善患者预后的强大工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b288/11655640/40f64c4ec3d5/41598_2024_81132_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验