Suppr超能文献

一种基于注意力机制的脑肿瘤分割方法。

A brain tumor segmentation method based on attention mechanism.

作者信息

Cao Juan, Liu Jinjia, Chen Jiaran

机构信息

School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.

出版信息

Sci Rep. 2025 Apr 30;15(1):15229. doi: 10.1038/s41598-025-98355-8.

Abstract

The rise in brain tumor incidence due to the global population aging has intensified the need for precise segmentation methods in clinical settings. Current segmentation networks often fail to capture comprehensive contextual information and fine edge details of brain tumors, which are crucial for accurate diagnosis and treatment. To address these challenges, we introduce BSAU-Net, a novel segmentation algorithm that employs attention mechanisms and edge feature extraction modules to enhance performance. Our approach aims to assist clinicians in making more accurate diagnostic and therapeutic decisions. BSAU-Net incorporates an edge feature extraction module (EA) based on the Sobel operator, enhancing the model's sensitivity to tumor regions while preserving edge contours. Additionally, a spatial attention module (SPA) is introduced to establish global feature correlations, critical for accurate tumor segmentation. To address class imbalance, which can hinder performance, we propose BADLoss, a loss function tailored to mitigate this issue. Experimental results on the BraTS2018 and BraTS2021 datasets demonstrate the effectiveness of BSAU-Net, achieving average Dice coefficients of 0.7506 and 0.7556, PPV of 0.7863 and 0.7843, sensitivity of 0.8998 and 0.9017, and HD95 of 2.1701 and 2.1543, respectively. These results highlight BSAU-Net's potential to significantly improve brain tumor segmentation in clinical practice.

摘要

由于全球人口老龄化导致脑肿瘤发病率上升,这加剧了临床环境中对精确分割方法的需求。当前的分割网络常常无法捕捉脑肿瘤的全面上下文信息和精细边缘细节,而这些对于准确诊断和治疗至关重要。为应对这些挑战,我们引入了BSAU-Net,这是一种新颖的分割算法,它采用注意力机制和边缘特征提取模块来提高性能。我们的方法旨在协助临床医生做出更准确的诊断和治疗决策。BSAU-Net包含一个基于Sobel算子的边缘特征提取模块(EA),在保留边缘轮廓的同时增强模型对肿瘤区域的敏感性。此外,还引入了一个空间注意力模块(SPA)来建立全局特征相关性,这对于准确的肿瘤分割至关重要。为解决可能阻碍性能的类别不平衡问题,我们提出了BADLoss,这是一种专门为缓解此问题而设计的损失函数。在BraTS2018和BraTS2021数据集上的实验结果证明了BSAU-Net的有效性,其平均Dice系数分别为0.7506和0.7556,PPV为0.7863和0.7843,敏感性为0.8998和0.9017,HD95为2.1701和2.1543。这些结果凸显了BSAU-Net在临床实践中显著改善脑肿瘤分割的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ee/12043955/3f0030a975ad/41598_2025_98355_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验