Hatami Davood, Hasler Roger, Spanu Andrea, Dostalek Jakub, Kleber Christoph, Knoll Wolfgang, Bonfiglio Annalisa
University School for Advanced Studies (IUSS), Piazza della Vittoria 15, Pavia, 27100, Italy.
Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo, Cagliari, 09123, Italy.
Sci Rep. 2025 Apr 30;15(1):15244. doi: 10.1038/s41598-025-99656-8.
In this study, we present the development of an advanced multivariable sensing platform that combines a flexible extended-gate organic thin-film transistor (ExG-OTFT) with a surface plasmon resonance (SPR) readout of its sensing surface. This device architecture overcomes the limitations of prior combined SPR and field-effect transistor (FET)-based systems, thanks to the spatial separation of the sensing surface from the transistor body, and the implementation of a pseudo-reference electrode, which significantly improves the system reliability. We demonstrate the potential of this solution through the simultaneous electrical and optical detection of layer-by-layer formation of polyelectrolyte multilayers in real-time. While the SPR-based transduction is sensitive to local refractive index changes associated with a mass uptake on the sensing surface, the electronic transduction provides complementary information about collective charge carrier distribution. The ExG-OTFT architecture ensures compatibility with commercially available SPR instrumentation, enabling straightforward upgrades to SPR/FET functionality with minimal modifications. More interestingly, we introduce a flexible SPR/FET sensor, offering a scalable, robust and cost-effective solution (thanks to the use of convenient printing techniques for the fabrication of the organic FET) for multivariable sensing applications across diverse fields to advance the next generation of sensing platforms.
在本研究中,我们展示了一种先进的多变量传感平台的开发,该平台将柔性扩展栅有机薄膜晶体管(ExG-OTFT)与其传感表面的表面等离子体共振(SPR)读出相结合。这种器件架构克服了先前基于SPR和场效应晶体管(FET)的组合系统的局限性,这得益于传感表面与晶体管主体的空间分离,以及伪参考电极的实施,这显著提高了系统可靠性。我们通过实时同时对聚电解质多层膜的逐层形成进行电学和光学检测,展示了该解决方案的潜力。虽然基于SPR的传感对与传感表面上的质量吸收相关的局部折射率变化敏感,但电子传感提供了有关集体电荷载流子分布的补充信息。ExG-OTFT架构确保了与市售SPR仪器的兼容性,只需进行最少的修改就能直接升级到SPR/FET功能。更有趣的是,我们推出了一种柔性SPR/FET传感器,为跨不同领域的多变量传感应用提供了一种可扩展、稳健且经济高效的解决方案(得益于使用便捷的印刷技术来制造有机FET),以推动下一代传感平台发展。