Suppr超能文献

超镁铁质岩石生物加速风化性能的跨物种比较。

Cross-species comparison of ultramafic rock bio-accelerated weathering performance.

作者信息

Plante Luke, Klug Jacob D, Lee Joseph J, Hornby Adrian, Adair James, Marecos Sabrina, Reid Matthew C, Gazel Esteban, Barstow Buz

机构信息

Department of Biological and Environmental Engineering, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA.

Department of Earth and Atmospheric Sciences, Cornell University, 4164 Snee Hall, Ithaca, NY, 14853, USA.

出版信息

Sci Rep. 2025 Aug 11;15(1):29325. doi: 10.1038/s41598-025-14369-2.

Abstract

Carbon mineralization sequesters atmospheric CO by reacting it with cations from rock weathering to form carbonates. However, natural rates are too slow, and acceleration with chemical or mechanical methods is expensive. Microbial processes (acidolysis, redoxolysis, complexolysis) could speed weathering with less energy. However, no microorganisms have been employed at industrial scale to dissolve ultramafic rocks. Although some microbes dissolve ultramafic rocks), their performance remains poorly understood. Here, we compare the dissolution of dunite (> 90% olivine) by three mineral-dissolving microbes: Gluconobacter oxydansSphingomonas desiccabilis and Penicillium simplicissimum. G. oxydans outperformed the others, producing the most acidic biolixiviant (pH 2.15 at 1% pulp density) and extracting the most magnesium (3,130 mg/L at 3% pulp density). It also co-dissolved nine metals, including eight critical for energy technologies (Cr, Mn, Co, Ni, Cu, Zn) reaching up to 33 mg/L Ni. Increasing pulp density boosted metal dissolution by G. oxydans and S. desiccabilis but inhibited P. simplicissimum above 2% pulp density. These results show G. oxydans is best suited for engineering to enhance bio-accelerated weathering, reducing costs and environmental impacts. Finally, both G. oxydans and P. simplicissimum can use cellulosic hydrolysate instead of glucose, lowering substrate costs for biolixiviant production.

摘要

碳矿化通过将大气中的二氧化碳与岩石风化产生的阳离子反应形成碳酸盐来封存二氧化碳。然而,自然速率太慢,而用化学或机械方法加速则成本高昂。微生物过程(酸解、氧化还原分解、络合分解)可以用较少的能量加速风化。然而,尚未有微生物被用于工业规模来溶解超镁铁岩。尽管一些微生物能溶解超镁铁岩,但其性能仍知之甚少。在此,我们比较了三种矿物溶解微生物对纯橄榄岩(橄榄石含量>90%)的溶解情况:氧化葡糖杆菌、干燥鞘氨醇单胞菌和简单青霉。氧化葡糖杆菌的表现优于其他微生物,产生的生物浸出液酸性最强(纸浆密度为1%时pH值为2.15),提取的镁最多(纸浆密度为3%时为3130毫克/升)。它还能共溶解九种金属,包括八种对能源技术至关重要的金属(铬、锰、钴、镍、铜、锌),镍含量高达33毫克/升。提高纸浆密度可促进氧化葡糖杆菌和干燥鞘氨醇单胞菌的金属溶解,但在纸浆密度高于2%时会抑制简单青霉的溶解。这些结果表明,氧化葡糖杆菌最适合用于工程设计以增强生物加速风化,降低成本和环境影响。最后,氧化葡糖杆菌和简单青霉都可以使用纤维素水解产物而不是葡萄糖,降低生物浸出液生产的底物成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验