Suppr超能文献

对氧化葡萄糖酸杆菌B58进行稀土元素生物浸出的直接全基因组规模筛选。

Direct genome-scale screening of Gluconobacter oxydans B58 for rare earth element bioleaching.

作者信息

Marecos Sabrina, Pian Brooke, Medin Sean A, Schmitz Alexa, Andrade Melinna, Wu Mingming, Balta J Brian, Gazel Esteban, Holycross Megan, Reid Matthew C, Barstow Buz

机构信息

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.

REEgen Inc., Praxis Center for Venture Development, Cornell University, Ithaca, NY, USA.

出版信息

Commun Biol. 2025 Apr 30;8(1):682. doi: 10.1038/s42003-025-08061-4.

Abstract

The transition to a sustainable energy economy will require an enormous increase in the supply of rare earth elements (REEs). Bioleaching offers a promising alternative to conventional hydrometallurgical methods for REE extraction from low-grade ores. However, exploiting this potential remains challenging due to large gaps in our understanding of the genetics involved, and inadequate biological tools to address them. We generated a highly non-redundant whole-genome knockout collection for the bioleaching microbe Gluconobacter oxydans B58, reducing redundancy by 85% compared to the previous best collection. This new collection was directly screened for bioleaching neodymium from a synthetic monazite powder, identifying 89 genes important for bioleaching, 68 of which have not previously been associated with this mechanism. We conducted bench-scale experiments to validate the extraction efficiency of promising strains: 8 demonstrated significant increases in extraction by up to 111% (δGO_1598, disruption of the gene encoding the orotate phosphoribosyltransferase enzyme PyrE), and one strain significantly reduced it by 97% (δGO_1096, disruption of the gene encoding the GTP-binding protein TypA). Notable changes in pH were only observed for 3 strains, suggesting an important role for non-acid mechanisms in bioleaching. These findings provide valuable insights into further enhancing REE-bioleaching by G. oxydans through genetic engineering.

摘要

向可持续能源经济的转型将需要大幅增加稀土元素(REEs)的供应量。生物浸出为从低品位矿石中提取稀土元素提供了一种有前景的替代传统湿法冶金方法的途径。然而,由于我们对其中涉及的遗传学的理解存在巨大差距,以及缺乏足够的生物学工具来解决这些问题,开发这种潜力仍然具有挑战性。我们为生物浸出微生物氧化葡糖杆菌B58生成了一个高度非冗余的全基因组敲除文库,与之前最好的文库相比,冗余度降低了85%。直接从合成独居石粉末中筛选这个新文库用于生物浸出钕,鉴定出89个对生物浸出重要的基因,其中68个以前与这种机制无关。我们进行了实验室规模的实验来验证有前景菌株的提取效率:8个菌株的提取率显著提高,最高可达111%(δGO_1598,编码乳清酸磷酸核糖基转移酶PyrE的基因被破坏),一个菌株的提取率显著降低了97%(δGO_1096,编码GTP结合蛋白TypA的基因被破坏)。仅在3个菌株中观察到显著的pH变化,这表明非酸性机制在生物浸出中起重要作用。这些发现为通过基因工程进一步提高氧化葡糖杆菌对稀土元素的生物浸出提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5a/12041372/80f89bccdb9f/42003_2025_8061_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验