Suppr超能文献

行走果蝇中转向的精细下行控制。

Fine-grained descending control of steering in walking Drosophila.

机构信息

Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.

Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell. 2024 Oct 31;187(22):6290-6308.e27. doi: 10.1016/j.cell.2024.08.033. Epub 2024 Sep 17.

Abstract

Locomotion involves rhythmic limb movement patterns that originate in circuits outside the brain. Purposeful locomotion requires descending commands from the brain, but we do not understand how these commands are structured. Here, we investigate this issue, focusing on the control of steering in walking Drosophila. First, we describe different limb "gestures" associated with different steering maneuvers. Next, we identify a set of descending neurons whose activity predicts steering. Focusing on two descending cell types downstream of distinct brain networks, we show that they evoke specific limb gestures: one lengthens strides on the outside of a turn, while the other attenuates strides on the inside of a turn. Our results suggest that a single descending neuron can have opposite effects during different locomotor rhythm phases, and we identify networks positioned to implement this phase-specific gating. Together, our results show how purposeful locomotion emerges from specific, coordinated modulations of low-level patterns.

摘要

运动涉及起源于大脑外的周期性肢体运动模式。有目的的运动需要大脑发出下行命令,但我们不清楚这些命令是如何构建的。在这里,我们研究了这个问题,重点是控制行走果蝇的转向。首先,我们描述了与不同转向动作相关的不同肢体“姿势”。接下来,我们确定了一组下行神经元,其活动可预测转向。我们专注于两个下行细胞类型,它们分别位于不同的脑网络的下游,结果表明它们会引发特定的肢体姿势:一种姿势会在外转弯时延长步幅,而另一种姿势会在转弯时减小步幅。我们的结果表明,单个下行神经元在不同的运动节律阶段可能会产生相反的效果,并且我们确定了处于实施这种特定相位门控的网络。总的来说,我们的结果表明,有目的的运动是如何从低水平模式的特定、协调的调制中产生的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验