Liu Shenghong, Qin Ke, Yang Jiashu, Hu Tao, Luo Hao, Wu Jingsong, Cui Zhen, Li Taotao, Ding Feng, Wang Xinran, Li Yuan, Zhai Tianyou
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
Natl Sci Rev. 2025 Mar 31;12(5):nwaf119. doi: 10.1093/nsr/nwaf119. eCollection 2025 May.
Two-dimensional (2D) van der Waals (vdW) heterostructures have emerged as a groundbreaking candidate for future integrated circuits due to their tunable band structures, atomically sharp interfaces and seamless compatibility with complementary metal-oxide-semiconductor technologies. Despite their promise, existing synthesis methods, such as mechanical transfer and vapor-phase conversion, struggle to achieve the high-quality, scalable production for practical applications. In response to these longstanding challenges, our study unveils for the first time the direct epitaxial growth of wafer-scale 2D vdW heterostructures (MoS[Formula: see text]/SnS[Formula: see text]) with exceptional quality and uniformity. This achievement is made possible through fundamentally enhancing the adsorption interactions between intermediates and the underlying material. The heterostructures display pristine, defect-free interfaces, consistent crystal orientation and wafer-level thickness uniformity. The Raman peak shifts of MoS[Formula: see text] and SnS[Formula: see text] are constrained to below 0.5 cm[Formula: see text] across the entire wafer, with intensity deviations maintained within an impressive 2%, and thickness uniformity surpassing 99.5%. Owing to their exceptional crystallinity and interface quality, the heterostructures demonstrate extraordinary electron and hole transfer capabilities, showcasing a prominent rectification effect and an astounding responsivity of [Formula: see text] A/W, averaged from 30 devices. Our study signifies a pivotal advancement for the integration of 2D materials into semiconductor technologies, paving the way for next-generation integrated circuits.
二维(2D)范德华(vdW)异质结构因其可调节的能带结构、原子级锐利的界面以及与互补金属氧化物半导体技术的无缝兼容性,已成为未来集成电路的开创性候选材料。尽管它们前景广阔,但现有的合成方法,如机械转移和气相转换,难以实现高质量、可扩展的实际应用生产。为应对这些长期存在的挑战,我们的研究首次揭示了具有卓越质量和均匀性的晶圆级二维vdW异质结构(MoS₂/SnS₂)的直接外延生长。这一成果是通过从根本上增强中间体与底层材料之间的吸附相互作用而实现的。这些异质结构展现出原始、无缺陷的界面、一致的晶体取向和晶圆级的厚度均匀性。在整个晶圆上,MoS₂和SnS₂的拉曼峰位移被限制在0.5 cm⁻¹以下,强度偏差保持在令人印象深刻的2%以内,厚度均匀性超过99.5%。由于其卓越的结晶度和界面质量,这些异质结构展示出非凡的电子和空穴转移能力,呈现出显著的整流效应和从30个器件平均得出的高达10⁻⁴ A/W的惊人响应度。我们的研究标志着二维材料集成到半导体技术中的关键进展,为下一代集成电路铺平了道路。