Suppr超能文献

用于智能家居手势识别的RaGeoSense,采用稀疏毫米波雷达点云技术。

RaGeoSense for smart home gesture recognition using sparse millimeter wave radar point clouds.

作者信息

Chen Honghong, Wang Xiangyu, Hao Zhanjun, Lu Yuru, Li Jingyu, Zhang Haozhe, Xi Ben

机构信息

College of Computer Science and Engineering, Northwest Normal University, Gansu, China.

出版信息

Sci Rep. 2025 May 1;15(1):15267. doi: 10.1038/s41598-025-00065-8.

Abstract

With the growing demand for contactless human-computer interaction in the smart home field, gesture recognition technology shows great market potential. In this paper, a sparse millimeter wave point cloud-based gesture recognition system, RaGeoSense, is proposed, which is designed for smart home scenarios. RaGeoSense effectively improves the recognition performance and system robustness by combining multiple advanced signal processing and deep learning methods. Firstly, the system adopts three methods, namely K-mean clustering straight-through filtering, frame difference filtering and median filtering, to reduce the noise of the raw millimeter wave data, which significantly improves the quality of the point cloud data. Subsequently, the generated point cloud data are processed with sliding sequence sampling and point cloud tiling to extract the spatio-temporal features of the action. To further improve the classification performance, the system proposes an integrated model architecture that combines GBDT and XGBoost for efficient extraction of nonlinear features, and utilizes LSTM gated loop units to classify the gesture sequences, thus realizing the accurate recognition of eight different one-arm gestures. The experimental results show that RaGeoSense performs well at different distances, angles and movement speeds, with an average recognition rate of 95.2%, which is almost unaffected by the differences in personnel and has a certain degree of anti-interference ability.

摘要

随着智能家居领域对非接触式人机交互的需求不断增长,手势识别技术展现出巨大的市场潜力。本文提出了一种基于稀疏毫米波点云的手势识别系统RaGeoSense,该系统专为智能家居场景设计。RaGeoSense通过结合多种先进的信号处理和深度学习方法,有效提高了识别性能和系统鲁棒性。首先,该系统采用K均值聚类直通滤波、帧差滤波和中值滤波三种方法来降低原始毫米波数据的噪声,显著提高了点云数据的质量。随后,对生成的点云数据进行滑动序列采样和点云平铺处理,以提取动作的时空特征。为进一步提高分类性能,该系统提出了一种集成模型架构,将梯度提升决策树(GBDT)和极端梯度提升(XGBoost)相结合,用于高效提取非线性特征,并利用长短期记忆网络(LSTM)门控循环单元对手势序列进行分类,从而实现对八种不同单臂手势的准确识别。实验结果表明,RaGeoSense在不同距离、角度和运动速度下均表现良好,平均识别率为95.2%,几乎不受人员差异的影响,具有一定的抗干扰能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72a1/12046016/2e953c5ee9c0/41598_2025_65_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验