Suppr超能文献

基于表面肌电信号和机器学习的实时手势识别:系统文献综述。

Real-Time Hand Gesture Recognition Using Surface Electromyography and Machine Learning: A Systematic Literature Review.

机构信息

Artificial Intelligence and Computer Vision Research Lab, Department of Informatics and Computer Science, Escuela Politécnica Nacional, Quito 170517, Ecuador.

School of Science, Royal Melbourne Institute of Technology (RMIT), Melbourne 3000, Australia.

出版信息

Sensors (Basel). 2020 Apr 27;20(9):2467. doi: 10.3390/s20092467.

Abstract

Today, daily life is composed of many computing systems, therefore interacting with them in a natural way makes the communication process more comfortable. Human-Computer Interaction (HCI) has been developed to overcome the communication barriers between humans and computers. One form of HCI is Hand Gesture Recognition (HGR), which predicts the class and the instant of execution of a given movement of the hand. One possible input for these models is surface electromyography (EMG), which records the electrical activity of skeletal muscles. EMG signals contain information about the intention of movement generated by the human brain. This systematic literature review analyses the state-of-the-art of real-time hand gesture recognition models using EMG data and machine learning. We selected and assessed 65 primary studies following the Kitchenham methodology. Based on a common structure of machine learning-based systems, we analyzed the structure of the proposed models and standardized concepts in regard to the types of models, data acquisition, segmentation, preprocessing, feature extraction, classification, postprocessing, real-time processing, types of gestures, and evaluation metrics. Finally, we also identified trends and gaps that could open new directions of work for future research in the area of gesture recognition using EMG.

摘要

如今,日常生活中充斥着各种计算系统,因此,以自然的方式与之交互能让交流过程更加舒适。人机交互(HCI)的发展就是为了克服人机之间的沟通障碍。人机交互的一种形式是手势识别(HGR),它可以预测手部给定动作的类别和执行瞬间。这些模型的一种可能输入是表面肌电图(EMG),它记录了骨骼肌肉的电活动。EMG 信号包含了由人脑产生的运动意图信息。本系统文献综述分析了使用 EMG 数据和机器学习进行实时手势识别模型的最新技术。我们按照 Kitchenham 方法选择和评估了 65 项主要研究。基于基于机器学习的系统的通用结构,我们分析了所提出模型的结构,并就模型类型、数据采集、分割、预处理、特征提取、分类、后处理、实时处理、手势类型和评估指标标准化了概念。最后,我们还确定了趋势和差距,这些趋势和差距可能为未来使用 EMG 进行手势识别的研究开辟新的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7bb/7250028/78cdddf31453/sensors-20-02467-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验