Levin Michael G, Koyama Satoshi, Woerner Jakob, Zhang David Y, Rodriguez Alexis, Nandi Tarak, Truong Buu, Abramowitz Sarah A, Gupta Hritvik, Kamineni Himani, Hornsby Whitney, Li Zilinghan, Cohron Taylor, Huffman Jennifer E, Ellinor Patrick, Kim Dokyoon, Liao Katherine P, Madduri Ravi K, Voight Benjamin F, Verma Anurag, Damrauer Scott M, Natarajan Pradeep
Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
medRxiv. 2025 Apr 22:2025.04.18.25326074. doi: 10.1101/2025.04.18.25326074.
Large-scale genetic association studies have identified thousands of trait-associated risk loci, establishing the polygenic basis for common complex traits and diseases. Although prior studies suggest that many trait-associated loci are pleiotropic, the extent to which this pleiotropy reflects shared causal variants or confounding by linkage disequilibrium remains poorly characterized. To define a set of candidate loci with potentially pleiotropic associations, we performed genome-wide association study (GWAS) meta-analyses of up to 1,167 clinically relevant traits and diseases across 1,789,365 diverse individuals genetically similar to Admixed American (AMR, N = 60,756), African (AFR, N = 128,361), East Asian (EAS, N = 307,465), European (EUR, N = 1,283,907), and South Asian (SAS, N = 8,876) reference populations from the VA Million Veteran Program (MVP), UK Biobank (UKB), FinnGen, Biobank Japan (BBJ), Tohoku Medical Megabank (ToMMO), and Korean Genome and Epidemiology Study (KoGES). We identified 27,193 genome-wide significant locus-trait pairs (1MB region with P < 5 × 10) in within-population analysis and 29,139 in multi-population analysis (P < 5 × 10). Among these, 11.5% (n = 3,149) of locus-trait pairs in population-wise and 6.4% (n = 1,875) in multi-population analyses did not reach genome-wide significance in previously published GWAS. In aggregate, the genome-wide significant loci fell within 2,624 non-overlapping autosomal genomic windows on average ~600kb in size. Each locus contained genome-wide significant signals for a median of 6 traits (IQR 2 to 18), including 2,110 (80%) pleiotropic loci associated with >1 trait. Multi-trait colocalization identified 1,902 (72%) loci with high-confidence (posterior probability > 0.9) evidence of a shared causal variant across two or more traits. Variants in pleiotropic loci were significantly enriched for a broad spectrum of functional annotations compared to non-pleiotropic counterparts. Polygenic scores (PGS) developed from these data generally improved prediction compared to existing PGS and were broadly associated with both on- and off-target phenotypes. These results provide a contemporary map of genetic pleiotropy across the spectrum of human traits/diseases and genetic backgrounds.
大规模基因关联研究已经确定了数千个与性状相关的风险位点,确立了常见复杂性状和疾病的多基因基础。尽管先前的研究表明许多与性状相关的位点具有多效性,但这种多效性在多大程度上反映了共享的因果变异或连锁不平衡造成的混杂仍未得到充分表征。为了定义一组具有潜在多效性关联的候选位点,我们对来自退伍军人事务部百万退伍军人计划(MVP)、英国生物银行(UKB)、芬兰基因研究、日本生物银行(BBJ)、东北医学大数据库(ToMMO)和韩国基因组与流行病学研究(KoGES)的1,789,365名遗传背景与混血美国人(AMR,N = 60,756)、非洲人(AFR,N = 128,361)、东亚人(EAS,N = 307,465)、欧洲人(EUR,N = 1,283,907)和南亚人(SAS,N = 8,876)相似的不同个体的多达1,167种临床相关性状和疾病进行了全基因组关联研究(GWAS)荟萃分析。我们在群体内分析中确定了27,193个全基因组显著的位点-性状对(1MB区域,P < 5×10),在多群体分析中确定了29,139个(P < 5×10)。其中,群体分析中11.5%(n = 3,149)的位点-性状对和多群体分析中6.4%(n = 1,875)的位点-性状对在先前发表的GWAS中未达到全基因组显著性。总体而言,全基因组显著位点平均落在2,624个不重叠的常染色体基因组窗口内,大小约为600kb。每个位点包含6个性状(四分位距2至18)的全基因组显著信号,其中包括2,110个(80%)与>1个性状相关的多效性位点。多性状共定位确定了1,902个(72%)位点具有高可信度(后验概率> 0.9)的证据,表明两个或更多性状存在共享因果变异。与非多效性位点相比,多效性位点中的变异在广泛的功能注释中显著富集。从这些数据开发的多基因评分(PGS)与现有的PGS相比,通常能改善预测,并且与目标和非目标表型广泛相关。这些结果提供了一幅跨越人类性状/疾病谱和遗传背景的遗传多效性当代图谱。