Suppr超能文献

预测非酒精性脂肪性肝病肥胖患者2型糖尿病风险的列线图的建立与验证:一项纵向观察性研究

Establishment and validation of a nomogram that predicts the risk of type 2 diabetes in obese patients with non-alcoholic fatty liver disease: a longitudinal observational study.

作者信息

Cai Xintian, Wang Mengru, Liu Shasha, Yuan Yujuan, Hu Junli, Zhu Qing, Hong Jing, Tuerxun Guzailinuer, Ma Huimin, Li Nanfang

机构信息

Hypertension Center of People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Hypertension Institute, National Health Committee Key Laboratory of Hypertension Clinical Research, Key Laboratory of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Medical Research Center for Hypertension Diseases Urumqi, Xinjiang, China.

Xinjiang Medical University Urumqi, Xinjiang, China.

出版信息

Am J Transl Res. 2022 Jul 15;14(7):4505-4514. eCollection 2022.

Abstract

OBJECTIVE

This study aimed to establish and validate a nomogram for better assessment of the risk of type 2 diabetes (T2D) in obese patients with non-alcoholic fatty liver disease (NAFLD) based on independent predictors.

METHODS

Of 1820 eligible participants from the NAGALA cohort enrolled in the study. Multivariate Cox regression was employed to construct the nomogram. The performance was assessed by area under the receiver operating characteristic curve (AUC), C-index, calibration curve, decision curve analysis, and Kaplan-Meier analysis.

RESULTS

Five predictors were selected from 17 variables. The AUC values at different time points all indicated that the model constructed with these five predictors had good predictive power. Decision curves indicated that the model could be applied to clinical applications.

CONCLUSIONS

We established and validated a reasonable, economical nomogram for predicting the risk of T2D in obese NAFLD patients. This simple clinical tool can help with risk stratification and thus contribute to the development of effective prevention programs against T2D in obese patients with NAFLD.

摘要

目的

本研究旨在基于独立预测因素建立并验证一种列线图,以更好地评估非酒精性脂肪性肝病(NAFLD)肥胖患者患2型糖尿病(T2D)的风险。

方法

本研究纳入了NAGALA队列中的1820名符合条件的参与者。采用多变量Cox回归构建列线图。通过受试者操作特征曲线下面积(AUC)、C指数、校准曲线、决策曲线分析和Kaplan-Meier分析来评估其性能。

结果

从17个变量中选择了5个预测因素。不同时间点的AUC值均表明,由这5个预测因素构建的模型具有良好的预测能力。决策曲线表明该模型可应用于临床。

结论

我们建立并验证了一种合理、经济的列线图,用于预测肥胖NAFLD患者患T2D的风险。这种简单的临床工具有助于进行风险分层,从而有助于制定针对肥胖NAFLD患者的有效的T2D预防方案。

相似文献

6
A Prediction Model of the Incidence of Nonalcoholic Fatty Liver Disease With Visceral Fatty Obesity: A General Population-Based Study.
Front Public Health. 2022 Jun 23;10:895045. doi: 10.3389/fpubh.2022.895045. eCollection 2022.
8
Establishment of a Risk Prediction Model for Non-alcoholic Fatty Liver Disease in Type 2 Diabetes.
Diabetes Ther. 2020 Sep;11(9):2057-2073. doi: 10.1007/s13300-020-00893-z. Epub 2020 Jul 28.
9
A nomogram incorporated lifestyle indicators for predicting nonalcoholic fatty liver disease.
Medicine (Baltimore). 2021 Jul 2;100(26):e26415. doi: 10.1097/MD.0000000000026415.
10
A nomogram for discrimination of non-alcoholic fatty liver disease in patients with chronic hepatitis B.
Eur J Gastroenterol Hepatol. 2021 Jan;33(1):69-75. doi: 10.1097/MEG.0000000000001691.

引用本文的文献

2
A cross-sectional analysis of remnant cholesterol-diabetes association in US adults.
Sci Rep. 2025 Jul 22;15(1):26572. doi: 10.1038/s41598-025-10961-8.
3
Relation of time in range to severity of coronary artery disease in patients with type 2 diabetes: A cross-sectional study.
Open Med (Wars). 2025 Jun 4;20(1):20251158. doi: 10.1515/med-2025-1158. eCollection 2025.
4
Association between circadian syndrome and MASLD risk: evidence from a large cross-sectional study.
BMC Gastroenterol. 2025 May 21;25(1):391. doi: 10.1186/s12876-025-03997-7.

本文引用的文献

9
Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies.
PLoS Med. 2020 Jun 12;17(6):e1003102. doi: 10.1371/journal.pmed.1003102. eCollection 2020 Jun.
10
Genetics of diabetes mellitus and diabetes complications.
Nat Rev Nephrol. 2020 Jul;16(7):377-390. doi: 10.1038/s41581-020-0278-5. Epub 2020 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验