Suppr超能文献

DSCT:一种用于快速准确进行空间转录组细胞分型的新型深度学习框架。

DSCT: a novel deep-learning framework for rapid and accurate spatial transcriptomic cell typing.

作者信息

Xu Yiheng, Yu Bin, Chen Xuan, Peng Aibing, Tao Quyuan, He Youzhe, Wang Yueming, Li Xiao-Ming

机构信息

Department of Neurology and Department of Psychiatry, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.

NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China.

出版信息

Natl Sci Rev. 2025 Jan 28;12(5):nwaf030. doi: 10.1093/nsr/nwaf030. eCollection 2025 May.

Abstract

Unraveling complex cell-type-composition and gene-expression patterns at the cellular spatial resolution is crucial for understanding intricate cell functions in the brain. In this study, we developed Deep Neural Network-based Spatial Cell Typing (DSCT)-an innovative framework for spatial cell typing within spatial transcriptomic data sets. This approach utilizes a synergistic integration of an enhanced gene-selection strategy and a lightweight deep neural network for data training, offering a more rapid and accurate solution for the analysis of spatial transcriptomic data. Based on comprehensive analysis, DSCT achieved exceptional accuracy in cell-type identification across various brain regions, species and spatial transcriptomic platforms. It also performed well in mapping finer cell types, thereby showcasing its versatility and adaptability across diverse data sets. Strikingly, DSCT exhibited high efficiency and remarkable processing speed, with fewer computational resource demands. As such, this novel approach opens new avenues for exploring the spatial organization of cell types and gene-expression patterns, advancing our understanding of biological functions and pathologies within the nervous system.

摘要

在细胞空间分辨率下解析复杂的细胞类型组成和基因表达模式对于理解大脑中复杂的细胞功能至关重要。在本研究中,我们开发了基于深度神经网络的空间细胞分型(DSCT)——一种用于空间转录组数据集中空间细胞分型的创新框架。该方法利用增强基因选择策略和轻量级深度神经网络的协同整合进行数据训练,为空间转录组数据分析提供了更快速准确的解决方案。基于全面分析,DSCT在跨各种脑区、物种和空间转录组平台的细胞类型识别中取得了卓越的准确性。它在绘制更精细的细胞类型方面也表现出色,从而展示了其在不同数据集上的通用性和适应性。引人注目的是,DSCT表现出高效率和显著的处理速度,对计算资源的需求较少。因此,这种新方法为探索细胞类型的空间组织和基因表达模式开辟了新途径,推动了我们对神经系统内生物学功能和病理学的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c657/12045154/52dfe49bb27a/nwaf030fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验