Suppr超能文献

医学中计算机模拟试验和数字孪生的未来。

The future of in silico trials and digital twins in medicine.

作者信息

Samei Ehsan

机构信息

Department of Radiology and Center for Virtual Imaging Trials, Duke University, 2424 Erwin Road, Durham, NC 27710, USA.

出版信息

PNAS Nexus. 2025 Apr 18;4(5):pgaf123. doi: 10.1093/pnasnexus/pgaf123. eCollection 2025 May.

Abstract

In silico trials and digital twins are emerging as transformative medical technologies, as they offer a unique way to design medical innovations, optimize their application, and evaluate their utility. Their use spans from individual care-appropriating the technology for personalized decision, to population care-presenting an alternative to design, supplement, or replace clinical trials. They effectually offer a new way to efficiently qualify, quantify, and personalize healthcare innovations in advance or in conjunction with clinical application. While much progress is underway to advance these technologies across diverse developments, realizing their full potential requires a cohesive goal to unify separate activities towards a common objective. Such a cohesive goal-moonshot-can be defined as forming and fostering a digital twin of every single human person, owned by the individual, progressively updated with new data, and used to deliver optimized care, technology assessment, and real-world evidence. The feasibility of such a vision builds upon a growing body of work in computational modeling, regulatory science, and digital healthcare. Bringing this vision to reality requires ownership and active engagement of all stakeholders to contribute diverse expertise and resources for transforming medicine and medical appropriation towards a more accurate, efficient, and quantitative future.

摘要

虚拟试验和数字孪生正作为变革性医疗技术崭露头角,因为它们提供了一种独特的方式来设计医疗创新、优化其应用并评估其效用。它们的应用范围从个体护理(将该技术用于个性化决策)到群体护理(为临床试验的设计、补充或替代提供一种选择)。它们切实提供了一种新方法,可在医疗创新临床应用之前或与之结合的过程中,高效地对其进行验证、量化和个性化。虽然在推动这些技术的各种不同发展方面正在取得很大进展,但要实现它们的全部潜力,需要一个凝聚性目标,以便将分散的活动统一到一个共同目标上。这样一个凝聚性目标——登月计划——可以定义为创建并培育每个人的数字孪生,由个人所有,随着新数据不断更新,并用于提供优化的护理、技术评估和真实世界证据。这一愿景的可行性建立在计算建模、监管科学和数字医疗领域日益增多的工作基础之上。要将这一愿景变为现实,需要所有利益相关者的主导和积极参与,以便贡献不同的专业知识和资源,推动医学和医疗应用朝着更准确、高效和量化的未来发展。

相似文献

1
The future of in silico trials and digital twins in medicine.
PNAS Nexus. 2025 Apr 18;4(5):pgaf123. doi: 10.1093/pnasnexus/pgaf123. eCollection 2025 May.
2
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
3
Envisioning the Future of Personalized Medicine: Role and Realities of Digital Twins.
J Med Internet Res. 2024 May 13;26:e50204. doi: 10.2196/50204.
4
Challenges and directions for digital twin implementation in otorhinolaryngology.
Eur Arch Otorhinolaryngol. 2024 Nov;281(11):6155-6159. doi: 10.1007/s00405-024-08662-5. Epub 2024 May 4.
5
Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm.
Front Genet. 2018 Feb 13;9:31. doi: 10.3389/fgene.2018.00031. eCollection 2018.
7
Digital Twins in Healthcare: Methodological Challenges and Opportunities.
J Pers Med. 2023 Oct 23;13(10):1522. doi: 10.3390/jpm13101522.
8
Virtual imaging trials in medicine: A brief takeaway of the lessons from the first international summit.
Med Phys. 2025 Mar;52(3):1950-1959. doi: 10.1002/mp.17587. Epub 2024 Dec 17.
9
Cardiovascular care with digital twin technology in the era of generative artificial intelligence.
Eur Heart J. 2024 Sep 26;45(45):4808-21. doi: 10.1093/eurheartj/ehae619.
10
Increasing acceptance of AI-generated digital twins through clinical trial applications.
Clin Transl Sci. 2024 Jul;17(7):e13897. doi: 10.1111/cts.13897.

本文引用的文献

3
Credibility assessment of in silico clinical trials for medical devices.
PLoS Comput Biol. 2024 Aug 8;20(8):e1012289. doi: 10.1371/journal.pcbi.1012289. eCollection 2024 Aug.
4
Digital twin in healthcare: Recent updates and challenges.
Digit Health. 2023 Jan 3;9:20552076221149651. doi: 10.1177/20552076221149651. eCollection 2023 Jan-Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验