Suppr超能文献

用于锂和钠电池的铵基塑性晶体作为固态电解质

Ammonium-Based Plastic Crystals as Solid-State Electrolytes for Lithium and Sodium Batteries.

作者信息

Salado Manuel, Smith Thomas H, Sirigiri Nanditha, Chen Fangfang, O'Dell Luke A, Pringle Jennifer M, Forsyth Maria

机构信息

BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.

IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.

出版信息

JACS Au. 2025 Mar 26;5(4):1663-1676. doi: 10.1021/jacsau.4c01086. eCollection 2025 Apr 28.

Abstract

Organic ionic plastic crystals (OIPCs) are a promising class of solid materials composed of organic cations and inorganic anions, increasingly explored for use as solid-state electrolytes (SSEs). These materials offer a safer alternative to conventional carbonate-based electrolytes in lithium and sodium ion batteries. In this study, lithium and sodium salts were incorporated into tetramethylammonium bis(fluorosulfonyl)imide ([N][FSI]), yielding solid state electrolytes with notable properties, including high ionic conductivities (1.79 mS·cm for LiFSI doped and 3.2 mS·cm NaFSI doped, both at 80 °C), elevated diffusion coefficients (up to 3.83 × 10 m·s for Li at 80 °C), and high transference numbers (0.8 and 0.4, for Li and Na, respectively). To date, except for ceramic and glassy ion conductors, there has been no significant research demonstrating true solid-state behavior with Li or Na ion transport fully decoupled from the motion of the host structure. Furthermore, these electrolytes have exhibited impressive current densities up to 3.5 mA·cm during Li|Li and 2.9 mA·cm for Na|Na symmetric cell cycling at room temperature. As a result, these materials hold considerable potential for enhancing both Li and Na electrochemical energy storage technologies, combining both improved efficiency and safety features.

摘要

有机离子塑性晶体(OIPCs)是一类由有机阳离子和无机阴离子组成的很有前景的固体材料,人们越来越多地探索将其用作固态电解质(SSEs)。在锂和钠离子电池中,这些材料为传统的碳酸盐基电解质提供了一种更安全的替代品。在本研究中,将锂盐和钠盐掺入四甲基铵双(氟磺酰)亚胺([N][FSI])中,得到了具有显著性能的固态电解质,包括高离子电导率(80°C时,LiFSI掺杂的为1.79 mS·cm,NaFSI掺杂的为3.2 mS·cm)、较高的扩散系数(80°C时,Li的扩散系数高达3.83×10 m·s)以及高迁移数(Li和Na的迁移数分别为0.8和0.4)。迄今为止,除了陶瓷和玻璃态离子导体外,尚无重要研究表明在Li或Na离子传输与主体结构的运动完全解耦的情况下具有真正的固态行为。此外,在室温下Li|Li和Na|Na对称电池循环过程中,这些电解质表现出高达3.5 mA·cm和2.9 mA·cm的令人印象深刻的电流密度。因此,这些材料在提高Li和Na电化学储能技术方面具有巨大潜力,兼具提高效率和安全性的特点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bc/12042028/434aeccac2b1/au4c01086_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验