Suppr超能文献

使用具有不同底部电极的3D垂直电阻开关存储器的全硬件导向物理储层计算。

Fully hardware-oriented physical reservoir computing using 3D vertical resistive switching memory with different bottom electrodes.

作者信息

Park Jihee, Kim Gimun, Kim Sungjun

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.

出版信息

Mater Horiz. 2025 May 2. doi: 10.1039/d5mh00275c.

Abstract

Reservoir computing (RC) is a promising machine learning paradigm that processes input data using a fixed random network. However, implementing both reservoir and readout layers typically requires multiple devices and additional fabrication steps. To overcome this, we introduce a fully integrated RC system based on a vertically stacked Ta/TaO/HfO/W and TiN vertical-resistive random-access memory (VRRAM) structure, which can select short-term and long-term memory in VRRAM structure with different bottom electrodes. The volatile VRRAM serves as a physical reservoir, utilizing its fading memory and nonlinearity to capture temporal dependencies, while the nonvolatile VRRAM functions as a readout network with multi-level storage capability and high linearity. Neuromorphic simulations show that using conductance variations as synaptic weights enables pattern recognition accuracy above 93.14%, successfully replicating biological synaptic behaviors. Finally, the proposed Cyclic RC structure effectively processes temporal patterns, achieving strong performance with an NRMSE of 0.2123 for waveform classification and 0.2377 for Hénon map prediction. These findings underscore the potential of hardware-efficient, short-term memory-based architectures for forecasting nonlinear dynamical systems and advancing neuromorphic computing applications.

摘要

储层计算(RC)是一种很有前景的机器学习范式,它使用固定的随机网络处理输入数据。然而,实现储层和读出层通常需要多个器件和额外的制造步骤。为了克服这一问题,我们引入了一种基于垂直堆叠的Ta/TaO/HfO/W和TiN垂直电阻随机存取存储器(VRRAM)结构的完全集成RC系统,该系统可以通过不同的底部电极在VRRAM结构中选择短期和长期记忆。易失性VRRAM用作物理储层,利用其衰退记忆和非线性来捕获时间依赖性,而非易失性VRRAM则作为具有多级存储能力和高线性的读出网络。神经形态模拟表明,将电导变化用作突触权重可使模式识别准确率高于93.14%,成功复制生物突触行为。最后,所提出的循环RC结构有效地处理时间模式,在波形分类中实现了0.2123的归一化均方根误差(NRMSE)和在Hénon映射预测中实现了0.2377的NRMSE,从而展现出强大的性能。这些发现强调了基于硬件高效、基于短期记忆的架构在预测非线性动力系统和推进神经形态计算应用方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验