Suppr超能文献

利用具有ATP循环功能的酰胺键合成酶生物催化合成N-反式阿魏酰酪胺

Biocatalytic Synthesis of N-trans-feruloyltyramine Using an Amide Bond Synthetase with an ATP Recycling.

作者信息

Zhao Bingshan, Micklefield Jason, Wang Yonghua, Wang Fanghua

机构信息

School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China.

Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.

出版信息

Appl Biochem Biotechnol. 2025 May 2. doi: 10.1007/s12010-025-05250-z.

Abstract

N-trans-feruloyltyramine (FLA) is one kind of phenylpropanoid compound found in various plants. Numerous studies have confirmed that it exhibits a wide range of physiological functions, such as antioxidant, ɑ-glucosidase inhibition, and anti-inflammatory activity. However, the low content of FLA in plants greatly limits its potential use in food and pharmaceutical industries. It is, therefore, very important to establish an effective synthesis of FLA. In this study, a green and efficient method to synthesize FLA was sought using an amide bond synthetase (ABS) biocatalyst. Ten kinds of ABS enzymes, including AlCfaL from Azospirillum lipoferum, were screened as the potential biocatalysts for the production of FLA. To obtain optimum reaction conditions, the effects of various parameters on conversion of FLA were firstly evaluated. Under the optimum conditions using 1 mM N-trans-ferulic acid, 50 mM tyramine (substrate ratio of 1:50), 10 mM MgCl₂, 8 mM ATP, and 35 µM AlCfaL enzyme at 30 °C with a shaking speed of 500 r/min for 48 h, maximum conversion rate of 74% was reached. Given that the amidation reaction is mediated by relative expensive ATP, we further optimized reaction systems to incorporate an ATP recycling system consisting of a polyphosphate kinase enzyme (CHU) and an inexpensive polyphosphate (PolyP) as the phosphate donor. Response surface methodology (RSM) based on five-level, five-variable central composite design (CCD) was used to evaluate the optimal parameters for the production of FLA. The effects of AMP, PolyP, AlCfaL, CHU concentrations, and reaction time on the conversion rate of FLA were analyzed. The optimum conditions derived via RSM were 7.12 mM AMP, 5.96 mg/mL PolyP, 39.72 μM AlCfaL, 27.68 μM CHU, and a reaction time of 36 h. Validation experiments conducted under these optimized conditions yielded an actual conversion rate of 63.5%, which compared well to the maximum predicted value of 64.2%.

摘要

N-反式阿魏酰酪胺(FLA)是一种存在于多种植物中的苯丙烷类化合物。大量研究证实,它具有多种生理功能,如抗氧化、α-葡萄糖苷酶抑制和抗炎活性。然而,植物中FLA含量较低,极大地限制了其在食品和制药行业的潜在应用。因此,建立一种有效的FLA合成方法非常重要。在本研究中,寻求使用酰胺键合成酶(ABS)生物催化剂来绿色高效地合成FLA。筛选了包括来自脂环酸芽孢杆菌的AlCfaL在内的十种ABS酶作为生产FLA的潜在生物催化剂。为了获得最佳反应条件,首先评估了各种参数对FLA转化率的影响。在最佳条件下,使用1 mM N-反式阿魏酸、50 mM酪胺(底物比为1:50)、10 mM MgCl₂、8 mM ATP和35 μM AlCfaL酶,于30℃、振荡速度为500 r/min反应48 h,达到了74%的最大转化率。鉴于酰胺化反应由相对昂贵的ATP介导,我们进一步优化反应体系,纳入由多磷酸激酶(CHU)和廉价的多聚磷酸盐(PolyP)作为磷供体组成的ATP循环系统。基于五水平、五变量中心复合设计(CCD)的响应面法(RSM)用于评估生产FLA的最佳参数。分析了AMP、PolyP、AlCfaL、CHU浓度和反应时间对FLA转化率的影响。通过RSM得出的最佳条件为7.12 mM AMP、5.96 mg/mL PolyP、39.72 μM AlCfaL、27.68 μM CHU和反应时间36 h。在这些优化条件下进行的验证实验得到的实际转化率为63.5%,与最大预测值64.2%相比,结果良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验