Suppr超能文献

留置输尿管支架对输尿管结石自然排出的预测:PASS评分

Prediction for spontaneous passage of ureteral stones with indwelling ureteral stent: PASS score.

作者信息

Heiniger Yasmin, Foerster Beat, Bodmer Nicolas S, Bachmann Lucas M, Kraft Pia, John Hubert, Schregel Christoph

机构信息

Department of Urology, Klinik Für Urologie, Kantonsspital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland.

Medignition Inc. Research Consultants, Zurich, Switzerland.

出版信息

World J Urol. 2025 May 2;43(1):259. doi: 10.1007/s00345-025-05616-2.

Abstract

PURPOSE

To develop a predictive model for the spontaneous passage of ureterolithiasis in patients with indwelling ureteral stents.

METHODS

In this retrospective cohort study, we reviewed all patients with ureterolithiasis who underwent ureteral stent placement at our institution from 2015 to 2021. Stone Characteristics, including stone location, density, shape, and diameter, were evaluated using computed tomography (CT). Low-density was defined as < 1000 Hounsfield units (HU). Spontaneous stone passage (SSP) was determinded by follow-up CT imaging or ureteroscopy. Multivariable logistic regression with backward selection was applied to identify predicts of SSP and to construct a predictive model.

RESULTS

Among 401 patients, 97 (24.2%) experienced SSP after a median follow-up of 26 days (Interquartile Range [IQR] 23-32). Independent predictors for SSP included low stone density < 1000 (Odds Ratio [OR] 7.45, 95% Confident Interval [CI] 2.79-25.94, p = < 0.001), location at the ureterovesical junction (OR 5.28, 95% CI 2.66-10.93, p = < 0.001), mid to distal ureteral location (OR 2.08, 95% CI 1.03-4.31, p = 0.013) and stone diameter ≤ 5 mm (OR 3.42, 95% CI 1.58-7.94, p = < 0.001). Using these predictors, we developed a three-item PASS Score to estimate the probability of SSP.

CONCLUSION

Approximately a quarter of ureteral stones passed spontaneously within 4 weeks of stent placement. The PASS score provides a practical tool for clinicians to estimate the likelihood of SSP and guide personalized treatment planning. External validation is required to confirm its clinical utility.

摘要

目的

建立输尿管结石患者留置输尿管支架后结石自然排出的预测模型。

方法

在这项回顾性队列研究中,我们回顾了2015年至2021年在本机构接受输尿管支架置入术的所有输尿管结石患者。使用计算机断层扫描(CT)评估结石特征,包括结石位置、密度、形状和直径。低密度定义为<1000亨氏单位(HU)。通过随访CT成像或输尿管镜检查确定结石自然排出(SSP)情况。应用向后选择的多变量逻辑回归来识别SSP的预测因素并构建预测模型。

结果

401例患者中,97例(24.2%)在中位随访26天(四分位间距[IQR]23 - 32)后出现SSP。SSP的独立预测因素包括结石密度<1000(比值比[OR]7.45,95%置信区间[CI]2.79 - 25.94,p = <0.001)、位于输尿管膀胱连接处(OR 5.28,95%CI 2.66 - 10.93,p = <0.001)、输尿管中下段位置(OR 2.08,95%CI 1.03 - 4.31,p = 0.013)以及结石直径≤5mm(OR 3.42,95%CI 1.58 - 7.94,p = <0.001)。利用这些预测因素,我们开发了一个三项PASS评分来估计SSP的概率。

结论

大约四分之一的输尿管结石在支架置入后4周内自然排出。PASS评分可为临床医生提供一个实用工具,以估计SSP的可能性并指导个性化治疗方案的制定。需要外部验证以确认其临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9063/12048427/a390ea6e7096/345_2025_5616_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验