Farinella Eleonora, Papakonstantinou Dimitrios, Koliakos Nikolaos, Maréchal Marie-Thérèse, Poras Mathilde, Pau Luca, Amel Otmane, Mahmoudi Sidi Ahmed, Briganti Giovanni
Centre Hospitalier Universitaire de Saint-Pierre, Brussels, Belgium.
University of Mons, Mons, Belgium.
Obes Surg. 2025 May 2. doi: 10.1007/s11695-025-07894-6.
Traditional risk models, such as POSSUM and OS-MS, have limited accuracy in predicting complications after bariatric surgery. Machine learning (ML) offers new opportunities for personalized risk assessment by incorporating artificial intelligence (AI). This study aimed to develop and evaluate two ML-based models: one using preoperative clinical data and another integrating postoperative data from a mobile application.
A prospective study was conducted on 104 bariatric surgery patients at Saint-Pierre University Hospital (September 2022-July 2023). Patients used the "Care4Today" mobile app for real-time postoperative monitoring. Data were analyzed using ML algorithms, with performance evaluated via cross-validation, accuracy, F1 scores, and AUC. A preoperative model used demographic and surgical data, while a postoperative model incorporated symptoms and mobile app-generated alerts.
A total of 104 patients were included. The preoperative model, utilizing Extreme linear discriminant analysis, achieved an accuracy of 75% and an AUC of 64.7%. The postoperative model, using supervised logistic regression with six selected features, demonstrated improved performance with an accuracy of 77.4% and an AUC of 71.5%. A user interface was developed for clinical implementation.
ML-based predictive models, particularly those integrating dynamic postoperative data, improve risk stratification in bariatric surgery. Real-time mobile health monitoring enhances early complication detection, offering a personalized, adaptable approach beyond traditional static risk models. Future validation with larger datasets is necessary to confirm generalizability.
传统风险模型,如POSSUM和OS-MS,在预测减肥手术后的并发症方面准确性有限。机器学习(ML)通过整合人工智能(AI)为个性化风险评估提供了新机会。本研究旨在开发和评估两种基于ML的模型:一种使用术前临床数据,另一种整合来自移动应用程序的术后数据。
对圣皮埃尔大学医院的104例减肥手术患者进行了一项前瞻性研究(2022年9月至2023年7月)。患者使用“今日关怀”移动应用程序进行术后实时监测。使用ML算法分析数据,通过交叉验证、准确性、F1分数和AUC评估性能。术前模型使用人口统计学和手术数据,而术后模型纳入症状和移动应用程序生成的警报。
共纳入104例患者。术前模型采用极端线性判别分析,准确率达到75%,AUC为64.7%。术后模型使用具有六个选定特征的监督逻辑回归,表现有所改善,准确率为77.4%,AUC为71.5%。开发了一个用户界面用于临床实施。
基于ML的预测模型,特别是那些整合动态术后数据的模型,改善了减肥手术中的风险分层。实时移动健康监测增强了早期并发症检测,提供了一种超越传统静态风险模型的个性化、适应性方法。未来需要用更大的数据集进行验证以确认其普遍性。