School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore.
School of Biological Sciences, Nanyang Technological University, 637551, Singapore, Singapore.
EMBO J. 2024 May;43(9):1898-1918. doi: 10.1038/s44318-024-00090-9. Epub 2024 Apr 2.
We introduce MolPhase, an advanced algorithm for predicting protein phase separation (PS) behavior that improves accuracy and reliability by utilizing diverse physicochemical features and extensive experimental datasets. MolPhase applies a user-friendly interface to compare distinct biophysical features side-by-side along protein sequences. By additional comparison with structural predictions, MolPhase enables efficient predictions of new phase-separating proteins and guides hypothesis generation and experimental design. Key contributing factors underlying MolPhase include electrostatic pi-interactions, disorder, and prion-like domains. As an example, MolPhase finds that phytobacterial type III effectors (T3Es) are highly prone to homotypic PS, which was experimentally validated in vitro biochemically and in vivo in plants, mimicking their injection and accumulation in the host during microbial infection. The physicochemical characteristics of T3Es dictate their patterns of association for multivalent interactions, influencing the material properties of phase-separating droplets based on the surrounding microenvironment in vivo or in vitro. Robust integration of MolPhase's effective prediction and experimental validation exhibit the potential to evaluate and explore how biomolecule PS functions in biological systems.
我们介绍 MolPhase,这是一种用于预测蛋白质相分离 (PS) 行为的先进算法,通过利用多样化的物理化学特征和广泛的实验数据集,提高了准确性和可靠性。MolPhase 采用用户友好的界面,可在蛋白质序列中并排比较不同的生物物理特征。通过与结构预测的额外比较,MolPhase 能够有效地预测新的相分离蛋白质,并指导假说的生成和实验设计。MolPhase 的关键促成因素包括静电 pi 相互作用、无序和类朊样结构域。例如,MolPhase 发现植物细菌 III 型效应物 (T3E) 非常容易发生同型 PS,这在体外生物化学和植物体内实验中得到了验证,模拟了它们在微生物感染期间在宿主中的注射和积累。T3E 的物理化学特性决定了它们多价相互作用的缔合模式,影响了相分离液滴的物质特性,这取决于体内或体外周围的微环境。MolPhase 的有效预测和实验验证的稳健整合展示了评估和探索生物分子 PS 在生物系统中功能的潜力。