Suppr超能文献

监测由蓝藻钝顶螺旋藻生物合成的金纳米颗粒对多重耐药病原菌的抗菌能力。

Monitoring of antibacterial capabilities of biosynthesized gold nanoparticles facilitated cyanobacterium, Spirulina subsalsa, against MDR pathogenic bacteria.

作者信息

Bej Shuvasree, Swain Surendra, Bishoyi Ajit Kumar, Sahoo Chita Ranjan, Jali Bigyan Ranjan, Padhy Rabindra Nath

机构信息

Central Research Laboratory, IMS & Sum Hospital, Siksha 'O' Anusandhan Deemed to Be University, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India.

Department of Chemistry, Veer Surendra Sai University of Technology, Burla Sambalpur, Odisha, 768018, India.

出版信息

Naunyn Schmiedebergs Arch Pharmacol. 2025 May 3. doi: 10.1007/s00210-025-04227-3.

Abstract

Gold nanoparticles (AuNPs) were biosynthesized with the non-nitrogen fixing cyanobacterium Spirulina subsalsa (Ss-AuNPs), and their antibacterial properties were monitored. Several analytical techniques, i.e., UV-visible spectroscopy, dynamic light scattering, zeta potential, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy, were employed for characterization. Thereafter, antibacterial efficacies of the biosynthesized AuNPs against multidrug-resistant bacterial strains, Escherichia coli, Acinetobacter baumannii, Staphylococcus aureus, and Streptococcus pyogenes were assessed. During synthesis of nanoparticles, a color change signified a change in the oxidation state of gold, whereby electrons in nanoparticles respond to light, which creates the color change called "plasmon resonance." Bioactive substances such as proteins and polysaccharides, and pigments like phycocyanin are crucial in converting Au (III) ions to Au (0). Here, S. subsalsa underplays to reduce AuNPs. A color shifts from pale green to pink-purple by UV-visible spectra with a strong absorption peak at 531 nm. The zeta potential of - 50 mV could increase the capacity of the compounds to interact with bacterial membranes, therefore enhancing their antibacterial effect. The FTIR spectral examination yielded a range of absorbance bands at 3321, 1633, and 513 cm, which were bound to the surface of AuNPs for agglomeration prevention to provide colloidal stability that acts as a stabilizing agent. It could be taken as a novelty that Ss-AuNPs had potent antibacterial activities against four MDR pathogenic bacteria with cited zone of inhibition, E. coli (25 ± 0.5), A. baumannii (22 ± 0.5), S. aureus (25 ± 0.5), and S. pyogenes (27 ± 0.5) mm.

摘要

采用非固氮蓝藻盐生螺旋藻(Ss-AuNPs)生物合成金纳米颗粒(AuNPs),并监测其抗菌性能。采用了几种分析技术,即紫外-可见光谱、动态光散射、zeta电位、傅里叶变换红外光谱和场发射扫描电子显微镜进行表征。此后,评估了生物合成的AuNPs对多药耐药细菌菌株大肠杆菌、鲍曼不动杆菌、金黄色葡萄球菌和化脓性链球菌的抗菌效果。在纳米颗粒合成过程中,颜色变化表明金的氧化态发生了变化,纳米颗粒中的电子对光作出反应,从而产生称为“等离子体共振”的颜色变化。蛋白质和多糖等生物活性物质以及藻蓝蛋白等色素对于将Au(III)离子转化为Au(0)至关重要。在这里,盐生螺旋藻在还原AuNPs过程中发挥作用。紫外-可见光谱显示颜色从浅绿色变为粉紫色,在531nm处有一个强吸收峰。-50mV的zeta电位可以增加化合物与细菌膜相互作用的能力,从而增强其抗菌效果。傅里叶变换红外光谱检查在3321、1633和513cm处产生了一系列吸收带,这些吸收带与AuNPs表面结合以防止团聚,从而提供作为稳定剂的胶体稳定性。盐生螺旋藻-AuNPs对四种耐多药病原菌具有显著的抗菌活性,其抑菌圈分别为大肠杆菌(25±0.5)、鲍曼不动杆菌(22±0.5)、金黄色葡萄球菌(25±0.5)和化脓性链球菌(27±0.5)mm,这可被视为一个新颖之处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验