Suppr超能文献

一种浅卷积神经网络在多机构CT图像数据中预测肺癌患者的预后。

A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data.

作者信息

Mukherjee Pritam, Zhou Mu, Lee Edward, Schicht Anne, Balagurunathan Yoganand, Napel Sandy, Gillies Robert, Wong Simon, Thieme Alexander, Leung Ann, Gevaert Olivier

机构信息

Stanford Center for Biomedical Informatics, Department of Medicine, Stanford University, Palo Alto, CA.

Department of Electrical Engineering, Stanford University, Palo Alto, CA.

出版信息

Nat Mach Intell. 2020 May;2(5):274-282. doi: 10.1038/s42256-020-0173-6. Epub 2020 May 18.

Abstract

Lung cancer is the most common fatal malignancy in adults worldwide, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. Computed tomography (CT) is routinely used in clinical practice to determine lung cancer treatment and assess prognosis. Here, we developed LungNet, a shallow convolutional neural network for predicting outcomes of NSCLC patients. We trained and evaluated LungNet on four independent cohorts of NSCLC patients from four medical centers: Stanford Hospital (n = 129), H. Lee Moffitt Cancer Center and Research Institute (n = 185), MAASTRO Clinic (n = 311) and Charité - Universitätsmedizin (n=84). We show that outcomes from LungNet are predictive of overall survival in all four independent survival cohorts as measured by concordance indices of 0.62, 0.62, 0.62 and 0.58 on cohorts 1, 2, 3, and 4, respectively. Further, the survival model can be used, via transfer learning, for classifying benign vs malignant nodules on the Lung Image Database Consortium (n = 1010), with improved performance (AUC=0.85) versus training from scratch (AUC=0.82). LungNet can be used as a noninvasive predictor for prognosis in NSCLC patients and can facilitate interpretation of CT images for lung cancer stratification and prognostication.

摘要

肺癌是全球成年人中最常见的致命恶性肿瘤,非小细胞肺癌(NSCLC)占肺癌诊断病例的85%。计算机断层扫描(CT)在临床实践中常用于确定肺癌治疗方案和评估预后。在此,我们开发了LungNet,一种用于预测NSCLC患者预后的浅层卷积神经网络。我们在来自四个医疗中心的四个独立NSCLC患者队列上对LungNet进行了训练和评估:斯坦福医院(n = 129)、H. Lee Moffitt癌症中心及研究所(n = 185)、MAASTRO诊所(n = 311)和夏里特大学医学中心(n = 84)。我们表明,LungNet的预后结果在所有四个独立生存队列中都能预测总生存期,在第1、2、3和4队列中的一致性指数分别为0.62、0.62、0.62和0.58。此外,通过迁移学习,可以将生存模型用于在肺部影像数据库联盟(n = 1010)上对良性与恶性结节进行分类,与从头开始训练相比,性能有所提高(AUC = 0.85)(AUC = 0.82)。LungNet可作为NSCLC患者预后的非侵入性预测工具,并有助于解读CT图像以进行肺癌分层和预后评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/8008967/ca6b0c8f08f3/nihms-1583977-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验