Mukherjee Pritam, Zhou Mu, Lee Edward, Schicht Anne, Balagurunathan Yoganand, Napel Sandy, Gillies Robert, Wong Simon, Thieme Alexander, Leung Ann, Gevaert Olivier
Stanford Center for Biomedical Informatics, Department of Medicine, Stanford University, Palo Alto, CA.
Department of Electrical Engineering, Stanford University, Palo Alto, CA.
Nat Mach Intell. 2020 May;2(5):274-282. doi: 10.1038/s42256-020-0173-6. Epub 2020 May 18.
Lung cancer is the most common fatal malignancy in adults worldwide, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. Computed tomography (CT) is routinely used in clinical practice to determine lung cancer treatment and assess prognosis. Here, we developed LungNet, a shallow convolutional neural network for predicting outcomes of NSCLC patients. We trained and evaluated LungNet on four independent cohorts of NSCLC patients from four medical centers: Stanford Hospital (n = 129), H. Lee Moffitt Cancer Center and Research Institute (n = 185), MAASTRO Clinic (n = 311) and Charité - Universitätsmedizin (n=84). We show that outcomes from LungNet are predictive of overall survival in all four independent survival cohorts as measured by concordance indices of 0.62, 0.62, 0.62 and 0.58 on cohorts 1, 2, 3, and 4, respectively. Further, the survival model can be used, via transfer learning, for classifying benign vs malignant nodules on the Lung Image Database Consortium (n = 1010), with improved performance (AUC=0.85) versus training from scratch (AUC=0.82). LungNet can be used as a noninvasive predictor for prognosis in NSCLC patients and can facilitate interpretation of CT images for lung cancer stratification and prognostication.
肺癌是全球成年人中最常见的致命恶性肿瘤,非小细胞肺癌(NSCLC)占肺癌诊断病例的85%。计算机断层扫描(CT)在临床实践中常用于确定肺癌治疗方案和评估预后。在此,我们开发了LungNet,一种用于预测NSCLC患者预后的浅层卷积神经网络。我们在来自四个医疗中心的四个独立NSCLC患者队列上对LungNet进行了训练和评估:斯坦福医院(n = 129)、H. Lee Moffitt癌症中心及研究所(n = 185)、MAASTRO诊所(n = 311)和夏里特大学医学中心(n = 84)。我们表明,LungNet的预后结果在所有四个独立生存队列中都能预测总生存期,在第1、2、3和4队列中的一致性指数分别为0.62、0.62、0.62和0.58。此外,通过迁移学习,可以将生存模型用于在肺部影像数据库联盟(n = 1010)上对良性与恶性结节进行分类,与从头开始训练相比,性能有所提高(AUC = 0.85)(AUC = 0.82)。LungNet可作为NSCLC患者预后的非侵入性预测工具,并有助于解读CT图像以进行肺癌分层和预后评估。