Suppr超能文献

通过复合凝胶聚合物电解质中的直接配位调节离子传输以实现高压和高负载准固态锂金属电池

Regulating Ion Transport Through Direct Coordination in Composite Gel Polymer Electrolytes Toward High-Voltage and High-Loading Quasi-Solid-State Lithium Metal Batteries.

作者信息

Ye Siyang, Zhang Yuji, Huang Yiheng, Li Yan, Li Zhaojie, Ou Chuan, Lin Minghui, Tian Fei, Lei Danni, Wang Chengxin

机构信息

State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou, 510275, China.

出版信息

Angew Chem Int Ed Engl. 2025 Jul 7;64(28):e202506662. doi: 10.1002/anie.202506662. Epub 2025 May 12.

Abstract

Poly(ethylene oxide)-based composite gel polymer electrolyte is widely used in lithium metal batteries to address dendrite growth and side reactions. However, the low oxidative decomposition potential (<4.0 V) of poly(ethylene oxide) limits the cyclic stability with Ni-rich layered cathodes. What's more, poor interface compatibility between fillers and polymer severely deteriorates lithium-ion pathways, which cannot achieve lithium metal batteries with high-load cathode. Herein, polyether monomers coordinate with aluminum ethoxide nanowires via in situ ultraviolet curing, stabilizing the lone pair electrons of ethereal oxygen atoms and suppressing oxidative degradation. This coordination also forms abundant and tight interfaces as the predominant lithium-ion conduction pathways, contributing to ordered lithium-ion fluxes and dendrite-free deposition on the lithium anode. In addition, a robust solid electrolyte interphase containing aluminum-based species enhances the interfacial stability of lithium anode. Meanwhile, the good compatibility between the electrolyte and the cathode effectively suppresses side reactions and contributes to the structural stabilization of the cycled cathode. The delicate design allows the Li||LiNiCoMnO cells to present excellent cycling stability from -20 °C to 60 °C. Specially, cells with 8.8 mg cm cathode cycle stably for over 120 cycles. This molecular structure engineering will greatly promote the practical application of solid-state lithium metal batteries.

摘要

基于聚环氧乙烷的复合凝胶聚合物电解质被广泛应用于锂金属电池中,以解决枝晶生长和副反应问题。然而,聚环氧乙烷较低的氧化分解电位(<4.0 V)限制了其与富镍层状阴极的循环稳定性。此外,填料与聚合物之间较差的界面相容性严重恶化了锂离子传导路径,无法实现高负载阴极的锂金属电池。在此,聚醚单体通过原位紫外光固化与乙醇铝纳米线配位,稳定醚氧原子的孤对电子并抑制氧化降解。这种配位还形成了丰富且紧密的界面作为主要的锂离子传导路径,有助于锂离子有序通量以及在锂阳极上无枝晶沉积。此外,含有铝基物种的坚固固体电解质界面增强了锂阳极的界面稳定性。同时,电解质与阴极之间良好的相容性有效抑制了副反应,并有助于循环阴极的结构稳定。这种精妙的设计使Li||LiNiCoMnO电池在-20°C至60°C范围内表现出优异的循环稳定性。特别地,具有8.8 mg cm阴极的电池可稳定循环超过120次。这种分子结构工程将极大地推动固态锂金属电池的实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验