He Xiuxiu, Trager Michael A, Cohen Gil'ad N, Damato Antonio L, Aramburu Núñez David
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA.
J Appl Clin Med Phys. 2025 Jun;26(6):e70064. doi: 10.1002/acm2.70064. Epub 2025 May 2.
The Bravos v1.2 control software introduces a ring applicator component type (ACT) with channel length verification to address geometric characteristics and dosimetric discrepancies caused by source positioning inaccuracies. This study aims to commission the ring applicator and investigate the new ring ACT in Bravos 1.2.
We evaluated two commissioning methods for a CT/MRI-compatible titanium ring applicator across three Bravos afterloaders and compared the new ring ACT with the traditional rigid ACT. Modifications to Varian's standard commissioning method included: (1) Delivering film plans with a 0.5 cm step size instead of 1 cm; (2) Alternating 0.3 s and 1 s dwell positions for enhanced source positioning analysis; (3) Including both "odd" and "even" positions to replicate clinical conditions. Films for 30-, 45-, and 60-degree rings (3.2 cm diameter) were delivered using modified methods and manual offsets of 0.0 cm, 0.1 cm, and 0.2 cm. Discrepancies between delivered and planned positions were analyzed, and the optimal offset was validated using clinical plans. Dosimetric differences for various gross tumor volumes (GTVs) and organs at risk (OARs) were assessed.
Film analysis (216 films) identified 0.2 cm as the optimal offset for all rings and afterloaders, minimizing deviations between the planned and delivered dwell positions. The rigid ACT showed larger discrepancies. The optimal offset reduced physical dosimetric differences to < 1% for key clinical metrics (D95, D90, D2cc) across all angles, with negligible differences in EQD2 values.
A novel commissioning procedure was developed to determine an optimal offset for accurate source positioning and minimize dosimetric discrepancies with the ring ACT. This method improves accuracy compared to the rigid ACT and standardizes commissioning for Bravos afterloaders with the v1.2 control system.
Bravos v1.2控制软件引入了具有通道长度验证功能的环形施源器组件类型(ACT),以解决因源定位不准确导致的几何特征和剂量差异问题。本研究旨在对环形施源器进行调试,并研究Bravos 1.2中的新型环形ACT。
我们在三台Bravos后装治疗机上评估了两种适用于CT/MRI兼容钛制环形施源器的调试方法,并将新型环形ACT与传统刚性ACT进行了比较。对瓦里安标准调试方法的修改包括:(1)以0.5 cm步长而非1 cm步长输送胶片计划;(2)交替设置0.3 s和1 s的驻留位置以增强源定位分析;(3)纳入“奇数”和“偶数”位置以复制临床情况。使用修改后的方法和0.0 cm、0.1 cm和0.2 cm的手动偏移量输送30度、45度和60度环形(直径3.2 cm)的胶片。分析输送位置与计划位置之间的差异,并使用临床计划验证最佳偏移量。评估了各种大体肿瘤体积(GTV)和危及器官(OAR)的剂量差异。
胶片分析(216张胶片)确定0.2 cm为所有环形施源器和后装治疗机的最佳偏移量,可最大程度减少计划驻留位置与输送驻留位置之间的偏差。刚性ACT显示出更大的差异。最佳偏移量将关键临床指标(D95、D90、D2cc)在所有角度的物理剂量差异降低至<1%,等效剂量(EQD2)值的差异可忽略不计。
开发了一种新颖的调试程序,以确定用于精确源定位的最佳偏移量,并最大程度减少与环形ACT的剂量差异。与刚性ACT相比,该方法提高了准确性,并使配备v1.2控制系统的Bravos后装治疗机的调试标准化。