Suppr超能文献

通过钯纳米线的可重复热刷新实现的长期可靠无线氢气传感器。

Long-term reliable wireless H gas sensor via repeatable thermal refreshing of palladium nanowire.

作者信息

Kim Ki-Hoon, Jo Min-Seung, Kim Sung-Ho, Kim Bokyeong, Kang Joonhee, Yoon Jun-Bo, Seo Min-Ho

机构信息

Department of Information Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Busan, Republic of Korea.

School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.

出版信息

Nat Commun. 2024 Oct 9;15(1):8761. doi: 10.1038/s41467-024-53080-0.

Abstract

The increasing significance of hydrogen (H) gas as a clean energy source has prompted the development of high-performance H gas sensors. Palladium (Pd)-based sensors, with their advantages of selectivity, scalability, and cost-effectiveness, have shown promise in this regard. However, the long-term stability and reliability of Pd-based sensors remain a challenge. This study not only identifies the exact cause for performance degradation in palladium (Pd) nanowire H sensors, but also implements and optimizes a cost-effective recovery method. The results from density functional theory (DFT) calculations and material analysis confirm the presence of C = O bonds, indicating performance degradation due to carbon dioxide (CO) accumulation on the Pd surface. Based on the molecular behavior calculation in high temperatures, we optimized the thermal treatment method of 200 °C for 10 minutes to remove the C = O contaminants, resulting in nearly 100% recovery of the sensor's initial performance even after 2 months of contamination.

摘要

氢气作为一种清洁能源的重要性日益凸显,这推动了高性能氢气传感器的发展。基于钯(Pd)的传感器具有选择性、可扩展性和成本效益等优势,在这方面展现出了潜力。然而,基于钯的传感器的长期稳定性和可靠性仍然是一个挑战。本研究不仅确定了钯(Pd)纳米线氢气传感器性能下降的确切原因,还实施并优化了一种经济高效的恢复方法。密度泛函理论(DFT)计算和材料分析结果证实了C=O键的存在,表明性能下降是由于二氧化碳(CO)在钯表面的积累。基于高温下的分子行为计算,我们优化了在200°C下处理10分钟的热处理方法,以去除C=O污染物,即使在污染2个月后,传感器的初始性能仍能恢复近100%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/716f/11479629/4ed57914320e/41467_2024_53080_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验