Suppr超能文献

TRAP:一种通过对比学习增强的框架,用于稳健的TCR-pMHC结合预测并提高泛化能力。

TRAP: a contrastive learning-enhanced framework for robust TCR-pMHC binding prediction with improved generalizability.

作者信息

Ge Jingxuan, Wang Jike, Ye Qing, Pan Liqiang, Kang Yu, Shen Chao, Deng Yafeng, Hsieh Chang-Yu, Hou Tingjun

机构信息

College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China

CarbonSilicon AI Technology Company, Ltd Hangzhou 310018 Zhejiang China.

出版信息

Chem Sci. 2025 Apr 29. doi: 10.1039/d4sc08141b.

Abstract

The binding of T cell receptors (TCRs) to peptide-MHC I (pMHC) complexes is critical for triggering adaptive immune responses to potential health threats. Developing highly accurate machine learning (ML) models to predict TCR-pMHC binding could significantly accelerate immunotherapy advancements. However, existing ML models for TCR-pMHC binding prediction often underperform with unseen epitopes, severely limiting their applicability. We introduce TRAP, which leverages contrastive learning to enhance model performance by aligning structural and sequence features of pMHC with TCR sequences. TRAP outperforms previous state-of-the-art models in both random and unseen epitope scenarios, achieving an AUPR of 0.84 (a 22% improvement over the second-best model) and an AUC of 0.92 in the random scenario, and an AUC of 0.75 (almost 11% higher than the second-best model) in the unseen epitope scenario. Furthermore, TRAP demonstrates a noteworthy capability to diagnose potential issues of cross-reactivity between TCRs and similar epitopes. This highly robust performance makes it a suitable tool for large-scale predictions in real-world settings. A specific case study confirmed that TRAP can discover hit TCRs with binding free energies comparable to referenced experimental results. These findings highlight TRAP's potential for practical applications and its role as a powerful tool in developing TCR-based immunotherapies.

摘要

T细胞受体(TCR)与肽 - 主要组织相容性复合体I(pMHC)复合物的结合对于触发针对潜在健康威胁的适应性免疫反应至关重要。开发高度准确的机器学习(ML)模型来预测TCR - pMHC结合可以显著加速免疫治疗的进展。然而,现有的用于TCR - pMHC结合预测的ML模型在面对未见表位时往往表现不佳,严重限制了它们的适用性。我们引入了TRAP,它利用对比学习通过将pMHC的结构和序列特征与TCR序列对齐来提高模型性能。在随机和未见表位场景中,TRAP均优于先前的最先进模型,在随机场景中实现了0.84的AUPR(比次优模型提高了22%)和0.92的AUC,在未见表位场景中实现了0.75的AUC(比次优模型高出近11%)。此外,TRAP展示了诊断TCR与相似表位之间潜在交叉反应性问题的显著能力。这种高度稳健的性能使其成为实际应用中大规模预测的合适工具。一个具体的案例研究证实,TRAP可以发现结合自由能与参考实验结果相当的命中TCR。这些发现突出了TRAP在实际应用中的潜力及其作为开发基于TCR的免疫疗法的强大工具的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c22/12135810/0936615b970f/d4sc08141b-f4.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验