Suppr超能文献

肾小球疾病全切片图像上淋巴细胞拓扑结构的计算表征

Computational characterization of lymphocyte topology on whole slide images of glomerular diseases.

作者信息

Li Xiang, Shah Manav, Liu Qian, Zhou Jin, Sotolongo Gina, Hodgin Jeffrey B, Mariani Laura, Holzman Lawrence, Janowczyk Andrew R, Zee Jarcy, Lafata Kyle J, Barisoni Laura

机构信息

Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA.

Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, USA.

出版信息

medRxiv. 2025 Apr 14:2025.04.12.25325548. doi: 10.1101/2025.04.12.25325548.

Abstract

The complexity of distribution of inflammatory cells in the kidney is not well captured by conventional semiquantitative visual assessment. This study aims to computationally quantify the topology of lymphocytic inflammation and tested its clinical relevance. N=333 NEPTUNE/CureGN participants (N=155 focal segmental glomerulosclerosis (FSGS) and N=178 Minimal Change Disease (MCD) with available clinical/demographic data and 1 Hematoxylin & Eosin-stained whole slide image (WSI), were included. Deep learning models were applied to segment cortex and lymphocytes. Graph modeling, where nodes were defined as lymphocytes and edges as the spatial connections between cortical lymphocytes, were applied to all WSIs. We then developed a novel graph-based habitat clustering algorithm to identify dense vs. sparse lymphocytic habitats. From each habitat, 26 high-throughput quantitative pathomic features were extracted to capture cell density, connectivity, clustering, and centrality. The association of these pathomic features with disease progression (40% eGFR decline or kidney replacement therapy) was assessed using LASSO-regularized Cox proportional hazards models. Clinical and demographic characteristics were added as potential confounders. Kaplan-Meier survival analysis with log-rank test was used to evaluate risk stratification. Two validation strategies were applied: (i) training on NEPTUNE with external validation on CureGN data, and (ii) using an 80/20 data partition of the combined datasets for training and validation, respectively. Multivariable Cox models integrating clinical/demographic variables with graph features achieved validation concordance index of 0.736±0.072 in the CureGN external validation and 0.757±0.071 in the combined validation dataset. The average degree feature (overall connectivity) in dense habitat and k-core feature (clustering pattern strength) in sparse habitat revealed consistent association with clinical outcome. The topological characterization of lymphocytic inflammation identifies immune habits, capturing the complexity of pattern of inflammation beyond human vision. These pathomic/topology signatures represent potential digital biomarkers that can enhance our ability to prognosticate/predict clinical outcome in MCD/FSGS.

摘要

传统的半定量视觉评估无法很好地体现肾脏中炎症细胞分布的复杂性。本研究旨在通过计算量化淋巴细胞炎症的拓扑结构,并测试其临床相关性。纳入了333名NEPTUNE/CureGN参与者(155名局灶节段性肾小球硬化症(FSGS)患者和178名微小病变病(MCD)患者,均有可用的临床/人口统计学数据以及1张苏木精-伊红染色的全切片图像(WSI))。应用深度学习模型对皮质和淋巴细胞进行分割。将节点定义为淋巴细胞、边定义为皮质淋巴细胞之间空间连接的图模型应用于所有WSI。然后,我们开发了一种基于图的新型栖息地聚类算法,以识别密集型与稀疏型淋巴细胞栖息地。从每个栖息地中提取26个高通量定量病理特征,以捕捉细胞密度、连通性、聚类和中心性。使用LASSO正则化Cox比例风险模型评估这些病理特征与疾病进展(估计肾小球滤过率下降40%或肾脏替代治疗)之间的关联。将临床和人口统计学特征作为潜在混杂因素纳入。采用Kaplan-Meier生存分析和对数秩检验来评估风险分层。应用了两种验证策略:(i)在NEPTUNE上进行训练,并在CureGN数据上进行外部验证;(ii)分别使用合并数据集的80/20数据划分进行训练和验证。整合临床/人口统计学变量与图特征的多变量Cox模型在CureGN外部验证中的验证一致性指数为0.736±0.072,在合并验证数据集中为0.757±0.071。密集栖息地中的平均度特征(整体连通性)和稀疏栖息地中的k核特征(聚类模式强度)显示出与临床结局的一致关联。淋巴细胞炎症的拓扑特征识别出免疫习性,捕捉到了超出人类视觉的炎症模式复杂性。这些病理/拓扑特征代表了潜在的数字生物标志物,可增强我们对MCD/FSGS临床结局进行预后/预测的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c6/12047963/36d6e74c7132/nihpp-2025.04.12.25325548v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验