Jayapandian Catherine P, Chen Yijiang, Janowczyk Andrew R, Palmer Matthew B, Cassol Clarissa A, Sekulic Miroslav, Hodgin Jeffrey B, Zee Jarcy, Hewitt Stephen M, O'Toole John, Toro Paula, Sedor John R, Barisoni Laura, Madabhushi Anant
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
Kidney Int. 2021 Jan;99(1):86-101. doi: 10.1016/j.kint.2020.07.044. Epub 2020 Aug 22.
The application of deep learning for automated segmentation (delineation of boundaries) of histologic primitives (structures) from whole slide images can facilitate the establishment of novel protocols for kidney biopsy assessment. Here, we developed and validated deep learning networks for the segmentation of histologic structures on kidney biopsies and nephrectomies. For development, we examined 125 biopsies for Minimal Change Disease collected across 29 NEPTUNE enrolling centers along with 459 whole slide images stained with Hematoxylin & Eosin (125), Periodic Acid Schiff (125), Silver (102), and Trichrome (107) divided into training, validation and testing sets (ratio 6:1:3). Histologic structures were manually segmented (30048 total annotations) by five nephropathologists. Twenty deep learning models were trained with optimal digital magnification across the structures and stains. Periodic Acid Schiff-stained whole slide images yielded the best concordance between pathologists and deep learning segmentation across all structures (F-scores: 0.93 for glomerular tufts, 0.94 for glomerular tuft plus Bowman's capsule, 0.91 for proximal tubules, 0.93 for distal tubular segments, 0.81 for peritubular capillaries, and 0.85 for arteries and afferent arterioles). Optimal digital magnifications were 5X for glomerular tuft/tuft plus Bowman's capsule, 10X for proximal/distal tubule, arteries and afferent arterioles, and 40X for peritubular capillaries. Silver stained whole slide images yielded the worst deep learning performance. Thus, this largest study to date adapted deep learning for the segmentation of kidney histologic structures across multiple stains and pathology laboratories. All data used for training and testing and a detailed online tutorial will be publicly available.
将深度学习应用于从全切片图像中自动分割(划定边界)组织学基本结构,有助于建立用于肾活检评估的新方案。在此,我们开发并验证了用于肾活检和肾切除术组织学结构分割的深度学习网络。在开发过程中,我们检查了29个参与NEPTUNE研究的中心收集的125份微小病变病活检样本,以及459张苏木精和伊红(125张)、过碘酸希夫(125张)、银染(102张)和三色染色(107张)的全切片图像,并将其分为训练集、验证集和测试集(比例为6:1:3)。由五位肾病理学家对组织学结构进行手动分割(共30048个标注)。使用针对各种结构和染色的最佳数字放大倍数训练了20个深度学习模型。在所有结构中,过碘酸希夫染色的全切片图像在病理学家和深度学习分割之间产生了最佳的一致性(F值:肾小球簇为0.93,肾小球簇加鲍曼囊为0.94,近端小管为0.91,远端肾小管节段为0.93,肾小管周围毛细血管为0.81,动脉和入球小动脉为0.85)。最佳数字放大倍数为:肾小球簇/肾小球簇加鲍曼囊为5倍,近端/远端小管、动脉和入球小动脉为10倍,肾小管周围毛细血管为40倍。银染全切片图像的深度学习性能最差。因此,这项迄今为止规模最大的研究将深度学习应用于跨多种染色和病理实验室的肾脏组织学结构分割。所有用于训练和测试的数据以及详细的在线教程将公开提供。