Suppr超能文献

一种用于乳腺癌数字病理图像中肿瘤浸润淋巴细胞分类的病理方法。

A pathomic approach for tumor-infiltrating lymphocytes classification on breast cancer digital pathology images.

作者信息

Verdicchio Mario, Brancato Valentina, Cavaliere Carlo, Isgrò Francesco, Salvatore Marco, Aiello Marco

机构信息

IRCCS SYNLAB SDN, Via E. Gianturco 113, Naples, 80143, Italy.

Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Claudio 21, Naples, 80125, Italy.

出版信息

Heliyon. 2023 Mar 9;9(3):e14371. doi: 10.1016/j.heliyon.2023.e14371. eCollection 2023 Mar.

Abstract

BACKGROUND AND OBJECTIVES

The detection of tumor-infiltrating lymphocytes (TILs) could aid in the development of objective measures of the infiltration grade and can support decision-making in breast cancer (BC). However, manual quantification of TILs in BC histopathological whole slide images (WSI) is currently based on a visual assessment, thus resulting not standardized, not reproducible, and time-consuming for pathologists. In this work, a novel pathomic approach, aimed to apply high-throughput image feature extraction techniques to analyze the microscopic patterns in WSI, is proposed. In fact, pathomic features provide additional information concerning the underlying biological processes compared to the WSI visual interpretation, thus providing more easily interpretable and explainable results than the most frequently investigated Deep Learning based methods in the literature.

METHODS

A dataset containing 1037 regions of interest with tissue compartments and TILs annotated on 195 TNBC and HER2+ BC hematoxylin and eosin (H&E)-stained WSI was used. After segmenting nuclei within tumor-associated stroma using a watershed-based approach, 71 pathomic features were extracted from each nucleus and reduced using a Spearman's correlation filter followed by a nonparametric Wilcoxon rank-sum test and least absolute shrinkage and selection operator. The relevant features were used to classify each candidate nucleus as either TILs or non-TILs using 5 multivariable machine learning classification models trained using 5-fold cross-validation (1) without resampling, (2) with the synthetic minority over-sampling technique and (3) with downsampling. The prediction performance of the models was assessed using ROC curves.

RESULTS

21 features were selected, with most of them related to the well-known TILs properties of having regular shape, clearer margins, high peak intensity, more homogeneous enhancement and different textural pattern than other cells. The best performance was obtained by Random-Forest with ROC AUC of 0.86, regardless of resampling technique.

CONCLUSIONS

The presented approach holds promise for the classification of TILs in BC H&E-stained WSI and could provide support to pathologists for a reliable, rapid and interpretable clinical assessment of TILs in BC.

摘要

背景与目的

肿瘤浸润淋巴细胞(TILs)的检测有助于制定浸润分级的客观指标,并能为乳腺癌(BC)的决策提供支持。然而,目前对BC组织病理学全切片图像(WSI)中TILs的手动定量是基于视觉评估,这对病理学家来说既不标准化、不可重复,又耗时。在这项工作中,提出了一种新的病理组学方法,旨在应用高通量图像特征提取技术来分析WSI中的微观模式。事实上,与WSI视觉解释相比,病理组学特征提供了有关潜在生物学过程的额外信息,因此比文献中最常研究的基于深度学习的方法提供了更易于解释和说明的结果。

方法

使用一个数据集,该数据集包含1037个感兴趣区域,这些区域带有组织隔室,并在195张三阴性乳腺癌(TNBC)和人表皮生长因子受体2阳性(HER2+)乳腺癌的苏木精和伊红(H&E)染色的WSI上标注了TILs。在使用基于分水岭的方法分割肿瘤相关基质内的细胞核后,从每个细胞核中提取71个病理组学特征,并使用斯皮尔曼相关滤波器进行降维,随后进行非参数威尔科克森秩和检验以及最小绝对收缩和选择算子。使用5种多变量机器学习分类模型,通过5折交叉验证(1)不进行重采样、(2)使用合成少数类过采样技术和(3)进行下采样,将相关特征用于将每个候选细胞核分类为TILs或非TILs。使用受试者工作特征(ROC)曲线评估模型的预测性能。

结果

选择了21个特征,其中大多数与TILs的已知特性相关,即形状规则、边缘更清晰、峰值强度高、增强更均匀以及纹理模式与其他细胞不同。无论采用何种重采样技术,随机森林模型的表现最佳,ROC曲线下面积(AUC)为0.86。

结论

所提出的方法有望对BC的H&E染色WSI中的TILs进行分类,并可为病理学家对BC中TILs进行可靠、快速且可解释的临床评估提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b311/10025040/c9f843dc9bdc/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验