Suppr超能文献

基于深度学习的光学相干断层扫描(OCT)图像分割对人体皮肤细胞核和层的定量评估

Quantitative assessment of nuclei and layers of human skin by deep learning-based OCT image segmentation.

作者信息

Liu Chih-Hao, Fu Li-Wei, Chang Shu-Wen, Wang Yen-Jen, Wang Jen-Yu, Wu Yu-Hung, Chen Homer H, Huang Sheng-Lung

机构信息

Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.

Graduate Institute of Communication Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.

出版信息

Biomed Opt Express. 2025 Mar 21;16(4):1528-1545. doi: 10.1364/BOE.558675. eCollection 2025 Apr 1.

Abstract

Recent advancements in cellular-resolution optical coherence tomography (OCT) have opened up possibilities for high-resolution and non-invasive clinical diagnosis. This study uses deep learning-based models on cross-sectional OCT images for human skin layers and keratinocyte nuclei segmentation. With U-Net as the basic framework, a 5-class segmentation model is developed. With deeply supervised learning objective functions, the global (skin layers) and local (nuclei) features were separately considered in designing our multi-class segmentation model to achieve an > 85% Dice coefficient accuracy through 5-fold cross-validation, enabling quantitative measurements for the healthy human skin structure. Specifically, we calculate the thickness of the stratum corneum, epidermis, and the cross-sectional area of keratinocyte nuclei as 22.71 ± 17.20 µm, 66.44 ± 11.61 µm, and 17.21 ± 9.33 µm, respectively. These measurements align with clinical findings on human skin structures and can serve as standardized metrics for clinical assessment using OCT imaging. Moreover, we enhance the segmentation accuracy by addressing the limitations of microscopic system resolution and the variability in human annotations.

摘要

细胞分辨率光学相干断层扫描(OCT)的最新进展为高分辨率和非侵入性临床诊断开辟了可能性。本研究将基于深度学习的模型用于人体皮肤层和角质形成细胞核分割的横断面OCT图像。以U-Net为基本框架,开发了一个5类分割模型。通过深度监督学习目标函数,在设计我们的多类分割模型时分别考虑了全局(皮肤层)和局部(细胞核)特征,通过5折交叉验证实现了>85%的骰子系数准确率,从而能够对健康人体皮肤结构进行定量测量。具体而言,我们计算出角质层、表皮的厚度以及角质形成细胞核的横截面积分别为22.71±17.20µm、66.44±11.61µm和17.21±9.33µm。这些测量结果与关于人体皮肤结构的临床发现一致,并且可以作为使用OCT成像进行临床评估的标准化指标。此外,我们通过解决微观系统分辨率的局限性和人类标注的可变性来提高分割准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d222/12047727/afbce5aa287f/boe-16-4-1528-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验