Suppr超能文献

通过多尺度编码器-解码器网络(MED-Net)对体内黑素细胞病变共聚焦图像中的细胞模式进行分割。

Segmentation of cellular patterns in confocal images of melanocytic lesions in vivo via a multiscale encoder-decoder network (MED-Net).

作者信息

Kose Kivanc, Bozkurt Alican, Alessi-Fox Christi, Gill Melissa, Longo Caterina, Pellacani Giovanni, Dy Jennifer G, Brooks Dana H, Rajadhyaksha Milind

机构信息

Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, 11377,NY, USA.

Electrical and Computer Engineering Department, Northeastern University, Boston, 02115, MA, USA.

出版信息

Med Image Anal. 2021 Jan;67:101841. doi: 10.1016/j.media.2020.101841. Epub 2020 Oct 7.

Abstract

In-vivo optical microscopy is advancing into routine clinical practice for non-invasively guiding diagnosis and treatment of cancer and other diseases, and thus beginning to reduce the need for traditional biopsy. However, reading and analysis of the optical microscopic images are generally still qualitative, relying mainly on visual examination. Here we present an automated semantic segmentation method called "Multiscale Encoder-Decoder Network (MED-Net)" that provides pixel-wise labeling into classes of patterns in a quantitative manner. The novelty in our approach is the modeling of textural patterns at multiple scales (magnifications, resolutions). This mimics the traditional procedure for examining pathology images, which routinely starts with low magnification (low resolution, large field of view) followed by closer inspection of suspicious areas with higher magnification (higher resolution, smaller fields of view). We trained and tested our model on non-overlapping partitions of 117 reflectance confocal microscopy (RCM) mosaics of melanocytic lesions, an extensive dataset for this application, collected at four clinics in the US, and two in Italy. With patient-wise cross-validation, we achieved pixel-wise mean sensitivity and specificity of 74% and 92%, respectively, with 0.74 Dice coefficient over six classes. In the scenario, we partitioned the data clinic-wise and tested the generalizability of the model over multiple clinics. In this setting, we achieved pixel-wise mean sensitivity and specificity of 77% and 94%, respectively, with 0.77 Dice coefficient. We compared MED-Net against the state-of-the-art semantic segmentation models and achieved better quantitative segmentation performance. Our results also suggest that, due to its nested multiscale architecture, the MED-Net model annotated RCM mosaics more coherently, avoiding unrealistic-fragmented annotations.

摘要

体内光学显微镜正在进入常规临床实践,用于非侵入性地指导癌症和其他疾病的诊断与治疗,从而开始减少对传统活检的需求。然而,光学显微镜图像的读取和分析通常仍为定性的,主要依靠目视检查。在此,我们提出一种名为“多尺度编码器-解码器网络(MED-Net)”的自动语义分割方法,该方法以定量方式将像素逐点标记为模式类别。我们方法的新颖之处在于对多尺度(放大倍数、分辨率)纹理模式进行建模。这模仿了检查病理图像的传统流程,该流程通常从低放大倍数(低分辨率、大视野)开始,随后用高放大倍数(高分辨率、小视野)对可疑区域进行更仔细的检查。我们在美国的四家诊所和意大利的两家诊所收集了117个黑素细胞病变的反射共聚焦显微镜(RCM)镶嵌图,这是该应用的一个广泛数据集,我们在这些镶嵌图的非重叠分区上对模型进行了训练和测试。通过患者层面的交叉验证,我们在六个类别上实现了逐像素平均敏感度和特异度分别为74%和92%,骰子系数为0.74。在该场景中,我们按诊所对数据进行分区,并测试了模型在多个诊所的通用性。在此设置下,我们实现了逐像素平均敏感度和特异度分别为77%和94%,骰子系数为0.77。我们将MED-Net与当前最先进的语义分割模型进行了比较,并取得了更好的定量分割性能。我们的结果还表明,由于其嵌套的多尺度架构,MED-Net模型对RCM镶嵌图的标注更连贯,避免了不切实际的碎片化标注。

相似文献

10
Dense gate network for biomedical image segmentation.密集门网络用于生物医学图像分割。
Int J Comput Assist Radiol Surg. 2020 Aug;15(8):1247-1255. doi: 10.1007/s11548-020-02138-7. Epub 2020 Apr 8.

引用本文的文献

本文引用的文献

2
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
8
CE-Net: Context Encoder Network for 2D Medical Image Segmentation.CE-Net:用于二维医学图像分割的上下文编码器网络。
IEEE Trans Med Imaging. 2019 Oct;38(10):2281-2292. doi: 10.1109/TMI.2019.2903562. Epub 2019 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验