Liu Gang, Gao Ke, Yao Tianbing, Hu Hui, Wang Zhaobin
Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, 310030, China.
Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, 310030, China.
Angew Chem Int Ed Engl. 2025 Jul 7;64(28):e202500781. doi: 10.1002/anie.202500781. Epub 2025 May 15.
Allylic substitution reactions are essential in organic synthesis, enabling the transformation of allylic reagents into diverse alkenes. Traditional methods, which typically operate through ionic pathways, often require substrate preactivation to address high C─O bond dissociation energies, leading to challenges in regioselectivity and limited substrate compatibility. Here, we introduce an iron-catalyzed radical pathway for allylic substitution that directly activates unprotected allylic alcohols, leveraging the redox and oxophilic properties of low-valent iron to promote selective C─O bond cleavage and allylic transposition. This radical approach achieves high regio- and stereoselectivity, providing access to a broad array of di-, tri-, and tetra-substituted alkenes with moderate to excellent yields and exceptional E/Z selectivity. Mechanistic studies confirm that the iron catalyst generates radical intermediates and mediates efficient dehydroxylation, enabling this direct transformation without protective groups or Lewis acid activators. The method's versatility is demonstrated through a broad substrate scope, including complex natural derivatives and functionalized alkyl halides, along with successful gram-scale synthesis and downstream derivatization. This iron-catalyzed radical pathway offers a sustainable and efficient alternative to conventional ionic methods, expanding the scope of allylic substitutions and advancing radical-based methodologies in synthetic chemistry.
烯丙基取代反应在有机合成中至关重要,能将烯丙基试剂转化为多种烯烃。传统方法通常通过离子途径进行,往往需要对底物进行预活化以应对较高的C─O键解离能,这导致区域选择性方面存在挑战且底物兼容性有限。在此,我们介绍一种用于烯丙基取代的铁催化自由基途径,该途径直接活化未受保护的烯丙醇,利用低价铁的氧化还原和亲氧性质促进选择性C─O键裂解和烯丙基转位。这种自由基方法实现了高区域和立体选择性,能够以中等至优异的产率以及出色的E/Z选择性获得多种二取代、三取代和四取代烯烃。机理研究证实,铁催化剂会生成自由基中间体并介导高效的脱羟基反应,从而实现这种无需保护基团或路易斯酸活化剂的直接转化。该方法的通用性通过广泛的底物范围得以证明,包括复杂的天然衍生物和功能化烷基卤化物,同时还成功进行了克级规模的合成及后续衍生化反应。这种铁催化自由基途径为传统离子方法提供了一种可持续且高效的替代方案,拓展了烯丙基取代的范围,并推动了合成化学中基于自由基的方法学发展。