Shie Shian-Sen, Su Wei-Wen
Department of Internal Medicine, Division of Infectious Diseases, Chang Gung Memorial Hostpital, Linkou Branch, Taoyuan Taiwan; and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
Department of Ophthalmology, Chansn Hospital, Zhongli, Taoyuan, Taiwan.
Transl Vis Sci Technol. 2025 May 1;14(5):6. doi: 10.1167/tvst.14.5.6.
Glaucoma is a leading cause of irreversible blindness worldwide, necessitating precise visual field (VF) assessments for effective diagnosis and management. The ability to accurately digitize VF reports is critical for maximizing the utility of the data gathered from clinical evaluations.
In response to the challenges associated with data accessibility in digitizing VF reports, we developed a lightweight convolutional neural network (CNN) framework. Using a decade-long dataset comprising 15,000 reports, we preprocessed portable document format files and standardized the extracted textual data into 48 × 48 pixel images. To enhance the model's generalization capabilities, we incorporated a variety of font types into the dataset.
The proposed CNN model achieved 100% accuracy in extracting numerical values and over 98.6% accuracy in metadata recognition. Post-processing correction using keyword mapping further improved metadata reliability, effectively addressing errors caused by visually similar characters. The model demonstrated superior efficiency compared to manual data entry, significantly reducing processing time while maintaining near-perfect accuracy.
The findings highlight the effectiveness of our AI-driven digitization method in accurately interpreting Humphrey VF images. This advanced framework provides a reliable solution to digitizing complex visual field reports, thereby facilitating enhanced clinical workflows.
The implications of this study extend to streamlined clinical workflows and AI-based report interpretation. By enabling comprehensive trend analysis of visual field changes, our model represents a significant advancement in glaucoma care, showcasing the transformative potential of AI-driven technologies in enhancing precision medicine and improving patient outcomes.
青光眼是全球不可逆性失明的主要原因,因此需要进行精确的视野(VF)评估以实现有效的诊断和管理。准确地将视野报告数字化的能力对于最大化从临床评估中收集的数据的效用至关重要。
为应对在将视野报告数字化过程中与数据可访问性相关的挑战,我们开发了一个轻量级卷积神经网络(CNN)框架。使用一个包含15000份报告的长达十年的数据集,我们对便携式文档格式文件进行预处理,并将提取的文本数据标准化为48×48像素的图像。为提高模型的泛化能力,我们将多种字体类型纳入数据集中。
所提出的CNN模型在提取数值方面达到了100%的准确率,在元数据识别方面准确率超过98.6%。使用关键词映射的后处理校正进一步提高了元数据的可靠性,有效解决了由视觉上相似的字符导致的错误。与手动数据录入相比,该模型展示了更高的效率,在保持近乎完美准确率的同时显著减少了处理时间。
研究结果突出了我们的人工智能驱动的数字化方法在准确解读汉弗莱视野图像方面的有效性。这个先进的框架为将复杂的视野报告数字化提供了一个可靠的解决方案,从而促进了临床工作流程的优化。
本研究的意义延伸至简化临床工作流程和基于人工智能的报告解读。通过实现对视野变化的全面趋势分析,我们的模型代表了青光眼护理方面的一项重大进展,展示了人工智能驱动技术在增强精准医学和改善患者预后方面的变革潜力。