Suppr超能文献

使用计算机视觉工具开发和验证自动视野报告提取平台

Development and Validation of Automated Visual Field Report Extraction Platform Using Computer Vision Tools.

作者信息

Saifee Murtaza, Wu Jian, Liu Yingna, Ma Ping, Patlidanon Jutima, Yu Yinxi, Ying Gui-Shuang, Han Ying

机构信息

Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, United States.

Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Institute of Ophthalmology, Capital Medical University, Beijing, China.

出版信息

Front Med (Lausanne). 2021 Apr 29;8:625487. doi: 10.3389/fmed.2021.625487. eCollection 2021.

Abstract

To introduce and validate hvf_extraction_script, an open-source software script for the automated extraction and structuring of metadata, value plot data, and percentile plot data from Humphrey visual field (HVF) report images. Validation was performed on 90 HVF reports over three different report layouts, including a total of 1,530 metadata fields, 15,536 value plot data points, and 10,210 percentile data points, between the computer script and four human extractors, compared against DICOM reference data. Computer extraction and human extraction were compared on extraction time as well as accuracy of extraction for metadata, value plot data, and percentile plot data. Computer extraction required 4.9-8.9 s per report, compared to the 6.5-19 min required by human extractors, representing a more than 40-fold difference in extraction speed. Computer metadata extraction error rate varied from an aggregate 1.2-3.5%, compared to 0.2-9.2% for human metadata extraction across all layouts. Computer value data point extraction had an aggregate error rate of 0.9% for version 1, <0.01% in version 2, and 0.15% in version 3, compared to 0.8-9.2% aggregate error rate for human extraction. Computer percentile data point extraction similarly had very low error rates, with no errors occurring in version 1 and 2, and 0.06% error rate in version 3, compared to 0.06-12.2% error rate for human extraction. This study introduces and validates hvf_extraction_script, an open-source tool for fast, accurate, automated data extraction of HVF reports to facilitate analysis of large-volume HVF datasets, and demonstrates the value of image processing tools in facilitating faster and cheaper large-volume data extraction in research settings.

摘要

为了引入并验证hvf_extraction_script,这是一个用于从汉弗莱视野(HVF)报告图像中自动提取和构建元数据、值图数据和百分位图数据的开源软件脚本。针对三种不同的报告布局,在90份HVF报告上进行了验证,包括总共1530个元数据字段、15536个值图数据点和10210个百分位数据点,将计算机脚本与四名人工提取人员的提取结果与DICOM参考数据进行比较。比较了计算机提取和人工提取在提取时间以及元数据、值图数据和百分位图数据的提取准确性方面的差异。计算机提取每份报告需要4.9 - 8.9秒,而人工提取人员需要6.5 - 19分钟,提取速度相差40多倍。计算机元数据提取错误率总计在1.2% - 3.5%之间,而所有布局下人工元数据提取的错误率为0.2% - 9.2%。计算机值数据点提取在版本1中的总计错误率为0.9%,版本2中小于0.01%,版本3中为0.15%,而人工提取的总计错误率为0.8% - 9.2%。计算机百分位数据点提取同样具有非常低的错误率,版本1和2中无错误,版本3中的错误率为0.06%,而人工提取的错误率为0.06% - 12.2%。本研究引入并验证了hvf_extraction_script,这是一个用于快速、准确、自动提取HVF报告数据以促进大容量HVF数据集分析的开源工具,并证明了图像处理工具在研究环境中促进更快、更廉价的大容量数据提取方面的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0234/8116600/e2878b5adaaf/fmed-08-625487-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验