Leiva-González J, Hernández-Vélez L, Quezada-Cáceres J, Pagés-Diaz J, Huiliñir C
Escuela de Ingeniería Civil, Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O'Higgins, Santiago, Chile.
Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile, Santiago, Chile.
Biodegradation. 2025 May 5;36(3):41. doi: 10.1007/s10532-025-10130-8.
Pharmaceutical micropollutants (PMPs) can cause significant environmental risks, with trace levels of exposure harming humans and wildlife. Biotransformation is a high-potential and low-cost way to remove PMPs, where ammonia-oxidizing microorganisms (AOM) are essential for eliminating pharmaceutical micropollutants. On the other hand, AOM are associated with nitrous oxide (NO) emission generation in nitrifying. In this sense, micropollutants can inhibit the activity of AOB, reducing the ammonia oxidation rate and increasing NO emissions. To mitigate these challenges, systems that allow satisfactory performance of the metabolism of AOB and NOB, such as the Sequencing Batch Reactor (SBR) and Sequencing Batch Biofilm Reactor (SBBR), are essential. However, no systematic review of the advances or gaps in this field has been published, mainly focused on SBR or SBBR. Thus, this work reviews recent advances regarding PMP biotransformation and NO production by AOM, emphasizing SBR and SBBR systems. Besides, we compare the removal performances of various micropollutants in biological processes. The biotransformation of emerging pollutants was also presented to explore the metabolic pathways of NO production and the critical factors that influence NO emissions in biological processes. Controlling DO levels, intermittent aeration, and maintaining low ammonium concentrations can help mitigate NO emissions. The simultaneous removal of PMPs and NO emissions was also analyzed; however, there is still limited research regarding the effect of PMPs on NO emission production in the nitrification process using SBR or SBBR. However, SBBRs may provide a more stable platform for both PMP removal and minimized emissions, mainly when biofilm characteristics and intermittent aeration are well managed. Thus, this review gives a complete vision of the advances of SBR and SBBR to remove PMPs and minimize the NO, as well as the future directions that research needs to address to improve the PMPs biotransformation and NO minimization.
药物微污染物(PMPs)会造成重大环境风险,痕量水平的暴露就会危害人类和野生动物。生物转化是一种具有高潜力且低成本的去除PMPs的方法,其中氨氧化微生物(AOM)对于消除药物微污染物至关重要。另一方面,AOM与硝化过程中一氧化二氮(N₂O)的排放有关。从这个意义上讲,微污染物会抑制氨氧化细菌(AOB)的活性,降低氨氧化速率并增加N₂O排放。为了应对这些挑战,使AOB和亚硝酸盐氧化细菌(NOB)的代谢性能令人满意的系统,如序批式反应器(SBR)和序批式生物膜反应器(SBBR),至关重要。然而,尚未发表对该领域进展或差距的系统综述,主要集中在SBR或SBBR上。因此,本工作综述了关于AOM进行PMP生物转化和N₂O产生的最新进展,重点是SBR和SBBR系统。此外,我们比较了生物过程中各种微污染物的去除性能。还介绍了新兴污染物的生物转化,以探索N₂O产生的代谢途径以及影响生物过程中N₂O排放的关键因素。控制溶解氧(DO)水平、间歇曝气和保持低铵浓度有助于减少N₂O排放。还分析了PMPs的同时去除和N₂O排放;然而,关于PMPs对使用SBR或SBBR的硝化过程中N₂O排放产生的影响的研究仍然有限。然而,SBBRs可能为PMPs去除和最小化排放提供一个更稳定的平台,主要是当生物膜特性和间歇曝气得到良好管理时。因此,本综述全面介绍了SBR和SBBR在去除PMPs和最小化N₂O方面的进展,以及研究为改善PMPs生物转化和N₂O最小化需要解决的未来方向。