Suppr超能文献

基于心理测量驱动的弥散加权连接组学预测有持续语言障碍的幼儿语言缺陷的深度推理神经网络分析。

Deep reasoning neural network analysis to predict language deficits from psychometry-driven DWI connectome of young children with persistent language concerns.

机构信息

Departments of Pediatrics, Wayne State University, Detroit, Michigan, USA.

Neurology, Wayne State University, Detroit, Michigan, USA.

出版信息

Hum Brain Mapp. 2021 Jul;42(10):3326-3338. doi: 10.1002/hbm.25437. Epub 2021 May 5.

Abstract

This study investigated whether current state-of-the-art deep reasoning network analysis on psychometry-driven diffusion tractography connectome can accurately predict expressive and receptive language scores in a cohort of young children with persistent language concerns (n = 31, age: 4.25 ± 2.38 years). A dilated convolutional neural network combined with a relational network (dilated CNN + RN) was trained to reason the nonlinear relationship between "dilated CNN features of language network" and "clinically acquired language score". Three-fold cross-validation was then used to compare the Pearson correlation and mean absolute error (MAE) between dilated CNN + RN-predicted and actual language scores. The dilated CNN + RN outperformed other methods providing the most significant correlation between predicted and actual scores (i.e., Pearson's R/p-value: 1.00/<.001 and .99/<.001 for expressive and receptive language scores, respectively) and yielding MAE: 0.28 and 0.28 for the same scores. The strength of the relationship suggests elevated probability in the prediction of both expressive and receptive language scores (i.e., 1.00 and 1.00, respectively). Specifically, sparse connectivity not only within the right precentral gyrus but also involving the right caudate had the strongest relationship between deficit in both the expressive and receptive language domains. Subsequent subgroup analyses inferred that the effectiveness of the dilated CNN + RN-based prediction of language score(s) was independent of time interval (between MRI and language assessment) and age of MRI, suggesting that the dilated CNN + RN using psychometry-driven diffusion tractography connectome may be useful for prediction of the presence of language disorder, and possibly provide a better understanding of the neurological mechanisms of language deficits in young children.

摘要

本研究旨在探讨当前最先进的基于心理测量学的扩散轨迹连通性深度推理网络分析是否能准确预测具有持续性语言障碍的幼儿队列中的表达性和接受性语言评分(n=31,年龄:4.25±2.38 岁)。我们训练了一个扩张卷积神经网络与关系网络相结合的模型(扩张 CNN+RN),用于推理“语言网络扩张 CNN 特征”与“临床获得的语言评分”之间的非线性关系。然后使用三折交叉验证来比较扩张 CNN+RN 预测和实际语言评分之间的 Pearson 相关系数和平均绝对误差(MAE)。扩张 CNN+RN 优于其他方法,提供了预测和实际评分之间最显著的相关性(即,表达性和接受性语言评分的 Pearson's R/p 值分别为 1.00/<.001 和.99/<.001),并产生 MAE:0.28 和 0.28。这种关系的强度表明,对表达性和接受性语言评分的预测概率都有所提高(即分别为 1.00 和 1.00)。具体来说,不仅在右侧中央前回内,而且在右侧尾状核内的稀疏连接与表达性和接受性语言领域的缺陷之间存在最强的关系。随后的亚组分析推断,基于扩张 CNN+RN 的语言评分预测的有效性独立于 MRI 之间的时间间隔(MRI 和语言评估之间)和 MRI 的年龄,这表明基于心理测量学的扩散轨迹连通性的扩张 CNN+RN 可能有助于预测语言障碍的存在,并可能更好地理解幼儿语言缺陷的神经机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8ea/8193535/f1e4dd05c28b/HBM-42-3326-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验