Aquilina Matthew, Wu Nathan J W, Kwan Kiros, Bušić Filip, Dodd James, Nicolás-Sáenz Laura, O'Callaghan Alan, Bankhead Peter, Dunn Katherine E
Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, Scotland, UK.
Deanery of Molecular, Genetic and Population Health Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
Nat Commun. 2025 May 5;16(1):4087. doi: 10.1038/s41467-025-59189-0.
Gel electrophoresis is a ubiquitous laboratory method for the separation and semi-quantitative analysis of biomolecules. However, gel image analysis principles have barely advanced for decades, in stark contrast to other fields where AI has revolutionised data processing. Here, we show that an AI-based system can automatically identify gel bands in seconds for a wide range of experimental conditions, surpassing the capabilities of current software in both ease-of-use and versatility. We use a dataset containing 500+ images of manually-labelled gels to train various U-Nets to accurately identify bands through segmentation, i.e. classifying pixels as 'band' or 'background'. When applied to gel electrophoresis data from other laboratories, our system generates results that quantitatively match those of the original authors. We have publicly released our models through GelGenie, an open-source application that allows users to extract bands from gel images on their own devices, with no expert knowledge or experience required.
凝胶电泳是一种用于生物分子分离和半定量分析的普遍应用的实验室方法。然而,与人工智能彻底改变数据处理的其他领域形成鲜明对比的是,凝胶图像分析原理几十年来几乎没有进展。在这里,我们展示了一个基于人工智能的系统能够在几秒钟内针对广泛的实验条件自动识别凝胶条带,在易用性和通用性方面都超越了当前软件的能力。我们使用一个包含500多张手动标记凝胶图像的数据集来训练各种U-Net,通过分割准确识别条带,即将像素分类为“条带”或“背景”。当应用于其他实验室的凝胶电泳数据时,我们的系统生成的结果在定量上与原始作者的结果相匹配。我们已经通过GelGenie公开发布了我们的模型,GelGenie是一个开源应用程序,允许用户在自己的设备上从凝胶图像中提取条带,无需专业知识或经验。