文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Preparation of antimicrobial polymeric composites using defective silk cocoons and moringa seed oil as additives for polyvinyl chloride.

作者信息

Kamel Nagwa A, Rozik Nehad N, Abd El-Messieh Salwa L

机构信息

Microwave Physics and Dielectrics Department, Physics Research Institute. National Research Centre, Dokki, Cairo, Egypt.

Polymers and Pigments Department, Chemical Industrial Research Institute. National Research Centre, Dokki, Cairo, Egypt.

出版信息

Sci Rep. 2025 May 5;15(1):15652. doi: 10.1038/s41598-025-97540-z.


DOI:10.1038/s41598-025-97540-z
PMID:40325099
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12053577/
Abstract

In this work, novel polymeric blends were prepared from polyvinyl chloride (PVC) and silkworm cocoon waste (SCW), that were defective cocoons excluded during the silk-making process in the ratio 50:50 w/w. These blends were incorporated with moringa seed oil (MSO) as a bio-based plasticizer with different concentrations (1, 2, and 3%) to obtain a final bioplastic with superior antimicrobial properties. The new composites are characterized through Scanning Electron Microscope (SEM), Fourier Transmission Infrared Spectroscopy (FTIR), contact angle measurements, Thermogravimetric analysis (TGA), dielectric, mechanical, and antimicrobial properties. Results of the study pointed to improved linking between the blend phases after incorporating 2% MSO. The composites could inhibit the growth of all the tested microorganisms. The conductivity σ values increased by increasing the content of MSO in the composite. The results demonstrate the potential of the new MSO plasticized composites as promising candidates for use in hospitals as antimicrobial surfaces.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/7dcb022794af/41598_2025_97540_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/56738f05be3d/41598_2025_97540_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/74f9b5e90fb2/41598_2025_97540_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/6602be2f5429/41598_2025_97540_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/ab3ad49920bc/41598_2025_97540_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/3cbd0ec64802/41598_2025_97540_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/79deb3c55000/41598_2025_97540_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/e6796353e588/41598_2025_97540_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/bb8426f85d92/41598_2025_97540_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/7dcb022794af/41598_2025_97540_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/56738f05be3d/41598_2025_97540_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/74f9b5e90fb2/41598_2025_97540_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/6602be2f5429/41598_2025_97540_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/ab3ad49920bc/41598_2025_97540_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/3cbd0ec64802/41598_2025_97540_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/79deb3c55000/41598_2025_97540_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/e6796353e588/41598_2025_97540_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/bb8426f85d92/41598_2025_97540_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d46/12053577/7dcb022794af/41598_2025_97540_Fig9_HTML.jpg

相似文献

[1]
Preparation of antimicrobial polymeric composites using defective silk cocoons and moringa seed oil as additives for polyvinyl chloride.

Sci Rep. 2025-5-5

[2]
Antimicrobial surface functionalization of PVC by a guanidine based antimicrobial polymer.

Mater Sci Eng C Mater Biol Appl. 2016-10-1

[3]
Novel nano composites from Citrus limon and Citrullus colocynthis agricultural wastes for biomedical applications.

Sci Rep. 2024-7-28

[4]
Comparing the microstructure and mechanical properties of Bombyx mori and Antheraea pernyi cocoon composites.

Acta Biomater. 2017-1-1

[5]
Silk fibroin-poly(lactic acid) biocomposites: Effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses.

Mater Sci Eng C Mater Biol Appl. 2019-6-15

[6]
Synthesis of biopolymer blends nanocomposites embedded with mono-(Ag, Fe) and bi-(Ag-Fe) metallic nanoparticles using an eco-friendly approach for antimicrobial activities.

Bioprocess Biosyst Eng. 2024-8

[7]
Structure and physical properties of silkworm cocoons.

J R Soc Interface. 2012-5-2

[8]
Super silkworm cocoons constructed by multi-silkworm larvae: Promising composites with dense structures and excellent mechanical properties.

Int J Biol Macromol. 2024-2

[9]
Efficient antimicrobial silk composites using synergistic effects of violacein and silver nanoparticles.

Mater Sci Eng C Mater Biol Appl. 2019-5-29

[10]
Biophysical studies of modified PVC sheet based on sunflower oil for antistatic and blood bags applications.

Sci Rep. 2024-6-6

本文引用的文献

[1]
Microwave-Assisted vs. Conventional Extraction of Seed Oil: Process Optimization and Efficiency Comparison.

Foods. 2024-10-1

[2]
Antimicrobial Efficacy of a Vegetable Oil Plasticizer in PVC Matrices.

Polymers (Basel). 2024-4-10

[3]
Silk wastes and autoclaved degumming as an alternative for a sustainable silk process.

Sci Rep. 2023-9-15

[4]
Modification of Poly(vinyl chloride) with Bio-Based Cassia Oil to Improve Thermo-Mechanical and Antimicrobial Properties.

Materials (Basel). 2023-3-28

[5]
PVC containing silver nanoparticles with antimicrobial properties effective against SARS-CoV-2.

Front Chem. 2023-3-13

[6]
Antimicrobial components in the cocoon silk of silkworm, Bombyx mori.

Int J Biol Macromol. 2023-1-1

[7]
Recent Research Progress of Ionic Liquid Dissolving Silks for Biomedicine and Tissue Engineering Applications.

Int J Mol Sci. 2022-8-5

[8]
Pharmacological, nutritional and antimicrobial uses of Moringa oleifera Lam. leaves in poultry nutrition: an updated knowledge.

Poult Sci. 2022-9

[9]
Antifouling and antimicrobial polyethersulfone/hyperbranched polyester-amide/Ag composite.

RSC Adv. 2020-6-24

[10]
is a Prominent Source of Nutrients with Potential Health Benefits.

Int J Food Sci. 2021-8-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索