Stanley Jared S, Pauker Hunter N, Kuker Erin, Dong Vy, Nielsen Robert J, Yang Jenny Y
Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.
Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States.
J Am Chem Soc. 2025 May 14;147(19):16099-16106. doi: 10.1021/jacs.4c18303. Epub 2025 May 6.
Efficient CO utilization is a critical component of closing the anthropogenic carbon cycle. Most studies have focused on the use of pure streams of CO. However, CO is generally available only in dilute streams, which requires capture by sorbents followed by energy-intensive regeneration to release concentrated CO. Direct utilization of sorbed-CO avoids the costly regeneration step, and the sorbent-CO interaction can kinetically activate CO to tune its reactivity toward products that could otherwise be inaccessible with direct CO reduction. We demonstrate that an -heterocyclic carbene, 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (DPIy), quantitatively reacts with CO from dilute streams (0.04 and 10%) to form the sorbent-CO substrate 1,3-bis(2,6-diisopropylphenyl)imidazolium-2-carboxylate (DPICx). Electrocatalyst iron tetraphenylporphyrin chloride (Fe(TPP)Cl) typically reduces CO to CO; however, with DPICx as the substrate, the eight-electron reduced product methane (CH) is produced with a high Faradaic efficiency (>85%) and regeneration of the sorbent DPIy. In addition to the overall energy and capital advantages of integrated CO capture and conversion, this result illustrates how sorbents can serve a dual purpose for both CO capture and chemical auxiliary purposes to access unique products. CO has a spectrum of reactivity with different types of sorbents; thus, these studies demonstrate how sorbent-CO interactions can be leveraged for integrated capture and utilization platforms to access a wider range of CO-derived products.
高效利用一氧化碳是闭合人为碳循环的关键组成部分。大多数研究都集中在纯一氧化碳流的利用上。然而,一氧化碳通常仅以稀释流的形式存在,这需要通过吸附剂进行捕获,然后进行能量密集型再生以释放浓缩的一氧化碳。直接利用吸附的一氧化碳避免了成本高昂的再生步骤,并且吸附剂与一氧化碳的相互作用可以在动力学上激活一氧化碳,从而调节其对产物的反应性,否则直接还原一氧化碳可能无法获得这些产物。我们证明,一种N-杂环卡宾,1,3-双(2,6-二异丙基苯基)咪唑-2-亚基(DPIy),能与稀释流(0.04%和10%)中的一氧化碳定量反应,形成吸附剂-一氧化碳底物1,3-双(2,6-二异丙基苯基)咪唑鎓-2-羧酸盐(DPICx)。电催化剂四苯基卟啉氯化铁(Fe(TPP)Cl)通常将一氧化碳还原为二氧化碳;然而,以DPICx为底物时,会以高法拉第效率(>85%)生成八电子还原产物甲烷(CH₄),并使吸附剂DPIy再生。除了集成一氧化碳捕获和转化在整体能源和资本方面的优势外,这一结果还说明了吸附剂如何能同时用于一氧化碳捕获和化学辅助目的,以获得独特的产物。一氧化碳与不同类型的吸附剂具有一系列反应性;因此,这些研究证明了如何利用吸附剂与一氧化碳的相互作用来构建集成捕获和利用平台,以获得更广泛的一氧化碳衍生产品。