Suppr超能文献

用于预测轻度认知障碍老年人脑β淀粉样蛋白和tau蛋白状态的简单风险评分的开发:一种机器学习方法。

Development of Simple Risk Scores for Prediction of Brain β-Amyloid and Tau Status in Older Adults With Mild Cognitive Impairment: A Machine Learning Approach.

作者信息

Petersen Kellen K, Nallapu Bhargav T, Lipton Richard B, Grober Ellen, Davatzikos Christos, Harvey Danielle J, Nasrallah Ilya M, Ezzati Ali

机构信息

Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA.

Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA.

出版信息

J Gerontol B Psychol Sci Soc Sci. 2025 Jun 10;80(7). doi: 10.1093/geronb/gbaf085.

Abstract

OBJECTIVES

The aim of this work is to use a machine learning framework to develop simple risk scores for predicting β-amyloid (Aβ) and tau positivity among individuals with mild cognitive impairment (MCI).

METHODS

Data for 657 individuals with MCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI) data set were used. A modified version of AutoScore, a machine learning-based software tool, was used to develop risk scores based on hierarchical combinations of predictor categories, including demographics, neuropsychological assessments, APOE4 status, and imaging biomarkers.

RESULTS

The highest area under the receiver operating characteristic curve (AUC) for predicting Aβ positivity was 0.79, which was achieved by 2 separate models with predictors of age, Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog), APOE4 status, and either Trail Making Test Part B (TMT-B) or white matter hyperintensity. The best-performing model for tau positivity had an AUC of 0.91 using age, ADAS-13, and TMT-B scores, APOE4 information, abnormal hippocampal volume, and amyloid status as predictors.

DISCUSSION

Simple integer-based risk scores using available data could be used for predicting Aβ and tau positivity in individuals with MCI. Models have the potential to improve clinical trials through improved screening of individuals.

摘要

目的

本研究旨在使用机器学习框架开发简单的风险评分,以预测轻度认知障碍(MCI)个体的β-淀粉样蛋白(Aβ)和tau蛋白阳性情况。

方法

使用来自阿尔茨海默病神经影像学倡议(ADNI)数据集的657例MCI个体的数据。基于机器学习的软件工具AutoScore的修改版本,用于根据预测因子类别的分层组合开发风险评分,这些预测因子类别包括人口统计学、神经心理学评估、APOE4状态和影像学生物标志物。

结果

预测Aβ阳性的受试者工作特征曲线下面积(AUC)最高为0.79,这是由2个独立模型实现的,其预测因子为年龄、阿尔茨海默病评估量表认知子量表(ADAS-cog)、APOE4状态,以及连线测验B部分(TMT-B)或白质高信号。预测tau蛋白阳性的表现最佳的模型,使用年龄、ADAS-13、TMT-B评分、APOE4信息、海马体积异常和淀粉样蛋白状态作为预测因子,AUC为0.91。

讨论

使用现有数据的基于简单整数的风险评分可用于预测MCI个体的Aβ和tau蛋白阳性情况。这些模型有潜力通过改进个体筛查来改善临床试验。

相似文献

本文引用的文献

1
Lecanemab in Early Alzheimer's Disease.早期阿尔茨海默病中的lecanemab
N Engl J Med. 2023 Jan 5;388(1):9-21. doi: 10.1056/NEJMoa2212948. Epub 2022 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验