Petersen Kellen K, Nallapu Bhargav T, Lipton Richard B, Grober Ellen, Davatzikos Christos, Harvey Danielle J, Nasrallah Ilya M, Ezzati Ali
Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA.
Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA.
J Gerontol B Psychol Sci Soc Sci. 2025 Jun 10;80(7). doi: 10.1093/geronb/gbaf085.
The aim of this work is to use a machine learning framework to develop simple risk scores for predicting β-amyloid (Aβ) and tau positivity among individuals with mild cognitive impairment (MCI).
Data for 657 individuals with MCI from the Alzheimer's Disease Neuroimaging Initiative (ADNI) data set were used. A modified version of AutoScore, a machine learning-based software tool, was used to develop risk scores based on hierarchical combinations of predictor categories, including demographics, neuropsychological assessments, APOE4 status, and imaging biomarkers.
The highest area under the receiver operating characteristic curve (AUC) for predicting Aβ positivity was 0.79, which was achieved by 2 separate models with predictors of age, Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog), APOE4 status, and either Trail Making Test Part B (TMT-B) or white matter hyperintensity. The best-performing model for tau positivity had an AUC of 0.91 using age, ADAS-13, and TMT-B scores, APOE4 information, abnormal hippocampal volume, and amyloid status as predictors.
Simple integer-based risk scores using available data could be used for predicting Aβ and tau positivity in individuals with MCI. Models have the potential to improve clinical trials through improved screening of individuals.
本研究旨在使用机器学习框架开发简单的风险评分,以预测轻度认知障碍(MCI)个体的β-淀粉样蛋白(Aβ)和tau蛋白阳性情况。
使用来自阿尔茨海默病神经影像学倡议(ADNI)数据集的657例MCI个体的数据。基于机器学习的软件工具AutoScore的修改版本,用于根据预测因子类别的分层组合开发风险评分,这些预测因子类别包括人口统计学、神经心理学评估、APOE4状态和影像学生物标志物。
预测Aβ阳性的受试者工作特征曲线下面积(AUC)最高为0.79,这是由2个独立模型实现的,其预测因子为年龄、阿尔茨海默病评估量表认知子量表(ADAS-cog)、APOE4状态,以及连线测验B部分(TMT-B)或白质高信号。预测tau蛋白阳性的表现最佳的模型,使用年龄、ADAS-13、TMT-B评分、APOE4信息、海马体积异常和淀粉样蛋白状态作为预测因子,AUC为0.91。
使用现有数据的基于简单整数的风险评分可用于预测MCI个体的Aβ和tau蛋白阳性情况。这些模型有潜力通过改进个体筛查来改善临床试验。