Suppr超能文献

硅外流转运蛋白BEC1对黄瓜的花形成和胁迫耐受性至关重要。

The silicon efflux transporter BEC1 is essential for bloom formation and stress tolerance in cucumber.

作者信息

Xia Changxuan, Mao Aijun, Yin Shanshan, Teng Huitong, Jin Caijiao, Zhang Jian, Li Ying, Dong Rui, Wu Tao, Wen Changlong

机构信息

Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.

State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing, 100097, China.

出版信息

J Integr Plant Biol. 2025 Jul;67(7):1895-1909. doi: 10.1111/jipb.13917. Epub 2025 May 6.

Abstract

Silicon (Si) plays a crucial role in plant growth, development, and stress tolerance. However, in some consumable plant products, such as fruits, Si deposition leads to the formation of a white powdery layer known as bloom, which diminishes glossiness and consumer appeal. Despite its significance, the genetic basis of bloom formation remains largely unexplored. Here, we identified a unique cucumber backbone parent line exhibiting bloomless fruit, which was designated blooml ess cucumber 1 (bec1). Map-based cloning of the bec1 locus revealed that BEC1, harboring a natural C-to-T variation at the 754th base of its coding region, is a strong candidate gene for the bloomless trait. Functional validation through gene-editing mutants and BEC1::BEC1-GFP transgenic lines confirmed that BEC1, encoding a Si efflux transporter, is responsible for bloom formation. Mutation of BEC1 impaired Si uptake, thereby preventing the deposition of Si on the surface of glandular trichomes and resulting in bloomless fruits. Additionally, Si deficiency in BEC1 mutants compromised resistance to Corynespora cassiicola and chilling stress. Interestingly, grafting bec1 scions onto bloom rootstocks restored the Si accumulation and stress resistance, while maintaining bloomless phenotype. Overall, our findings elucidate the role of BEC1 in bloom formation and provide a valuable genetic target for breeding bloomless cucumber with enhanced stress resilience.

摘要

硅(Si)在植物生长、发育和抗逆性方面发挥着关键作用。然而,在一些可食用的植物产品中,如水果,硅的沉积会导致形成一层白色粉末状物质,即蜡粉,这会降低果实的光泽度和消费者吸引力。尽管蜡粉形成具有重要意义,但其遗传基础在很大程度上仍未被探索。在此,我们鉴定出了一个独特的黄瓜骨干亲本系,其果实无蜡粉,被命名为无蜡粉黄瓜1(bec1)。对bec1位点进行图位克隆表明,BEC1在其编码区第754个碱基处存在一个自然的C到T变异,是无蜡粉性状的一个强有力候选基因。通过基因编辑突变体和BEC1::BEC1-GFP转基因系进行的功能验证证实,编码硅外排转运蛋白的BEC1负责蜡粉的形成。BEC1的突变损害了硅的吸收,从而阻止了硅在腺毛表面的沉积,导致果实无蜡粉。此外,bec1突变体中硅的缺乏损害了对瓜类炭疽病菌的抗性和抗冷胁迫能力。有趣的是,将bec1接穗嫁接到有蜡粉的砧木上,恢复了硅的积累和抗逆性,同时保持了无蜡粉的表型。总体而言,我们的研究结果阐明了BEC1在蜡粉形成中的作用,并为培育具有增强抗逆性的无蜡粉黄瓜提供了一个有价值的遗传靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/568e/12225014/4b641a216858/JIPB-67-1895-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验