Suppr超能文献

使用共享潜在变量模型进行概率聚类以评估阿尔茨海默病生物标志物。

Probabilistic clustering using shared latent variable model for assessing Alzheimer's disease biomarkers.

作者信息

Xu Yizhen, Zeger Scott, Wang Zheyu

机构信息

Division of Biostatistics, Department of Population Health Sciences, University of Utah, Salt Lake City, Utah 84112, United States.

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, United States.

出版信息

Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf010.

Abstract

The preclinical stage of many neurodegenerative diseases can span decades before symptoms become apparent. Understanding the sequence of preclinical biomarker changes provides a critical opportunity for early diagnosis and effective intervention prior to significant loss of patients' brain functions. The main challenge to early detection lies in the absence of direct observation of the disease state and the considerable variability in both biomarkers and disease dynamics among individuals. Recent research hypothesized the existence of subgroups with distinct biomarker patterns due to co-morbidities and degrees of brain resilience. Our ability to diagnose early and intervene during the preclinical stage of neurodegenerative diseases will be enhanced by further insights into heterogeneity in the biomarker-disease relationship. In this article, we focus on Alzheimer's disease (AD) and attempt to identify the systematic patterns within the heterogeneous AD biomarker-disease cascade. Specifically, we quantify the disease progression using a dynamic latent variable whose mixture distribution represents patient subgroups. Model estimation uses Hamiltonian Monte Carlo with the number of clusters determined by the Bayesian Information Criterion. We report simulation studies that investigate the performance of the proposed model in finite sample settings that are similar to our motivating application. We apply the proposed model to the Biomarkers of Cognitive Decline Among Normal Individuals data, a longitudinal study that was conducted over 2 decades among individuals who were initially cognitively normal. Our application yields evidence consistent with the hypothetical model of biomarker dynamics presented in Jack Jr et al. In addition, our analysis identified 2 subgroups with distinct disease-onset patterns. Finally, we develop a dynamic prediction approach to improve the precision of prognoses.

摘要

许多神经退行性疾病的临床前阶段可能持续数十年才会出现明显症状。了解临床前生物标志物变化的序列为在患者脑功能显著丧失之前进行早期诊断和有效干预提供了关键机会。早期检测的主要挑战在于无法直接观察疾病状态,以及个体之间生物标志物和疾病动态存在相当大的变异性。最近的研究推测,由于共病和脑弹性程度的不同,存在具有不同生物标志物模式的亚组。通过进一步深入了解生物标志物与疾病关系中的异质性,我们在神经退行性疾病临床前阶段进行早期诊断和干预的能力将得到提高。在本文中,我们聚焦于阿尔茨海默病(AD),并试图识别异质性AD生物标志物 - 疾病级联中的系统模式。具体而言,我们使用一个动态潜在变量来量化疾病进展,其混合分布代表患者亚组。模型估计使用哈密顿蒙特卡洛方法,聚类数量由贝叶斯信息准则确定。我们报告了模拟研究,该研究调查了所提出模型在与我们的激励性应用相似的有限样本设置中的性能。我们将所提出的模型应用于“正常个体认知衰退生物标志物”数据,这是一项对最初认知正常的个体进行了20多年的纵向研究。我们的应用产生了与Jack Jr等人提出的生物标志物动态假设模型一致的证据。此外,我们的分析确定了两个具有不同疾病发作模式的亚组。最后,我们开发了一种动态预测方法来提高预后的准确性。

相似文献

本文引用的文献

1
Stan: A Probabilistic Programming Language.斯坦:一种概率编程语言。
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验