Suppr超能文献

将可穿戴健身传感器的代谢消耗信息整合到人工智能增强型自动胰岛素输送系统中:一项随机临床试验。

Integrating metabolic expenditure information from wearable fitness sensors into an AI-augmented automated insulin delivery system: a randomised clinical trial.

机构信息

Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Center for Health and Healing, Oregon Health and Science University, Portland, OR, USA.

Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Center for Health and Healing, Oregon Health and Science University, Portland, OR, USA.

出版信息

Lancet Digit Health. 2023 Sep;5(9):e607-e617. doi: 10.1016/S2589-7500(23)00112-7. Epub 2023 Aug 3.

Abstract

BACKGROUND

Exercise can rapidly drop glucose in people with type 1 diabetes. Ubiquitous wearable fitness sensors are not integrated into automated insulin delivery (AID) systems. We hypothesised that an AID can automate insulin adjustments using real-time wearable fitness data to reduce hypoglycaemia during exercise and free-living conditions compared with an AID not automating use of fitness data.

METHODS

Our study population comprised of individuals (aged 21-50 years) with type 1 diabetes from from the Harold Schnitzer Diabetes Health Center clinic at Oregon Health and Science University, OR, USA, who were enrolled into a 76 h single-centre, two-arm randomised (4-block randomisation), non-blinded crossover study to use (1) an AID that detects exercise, prompts the user, and shuts off insulin during exercise using an exercise-aware adaptive proportional derivative (exAPD) algorithm or (2) an AID that automates insulin adjustments using fitness data in real-time through an exercise-aware model predictive control (exMPC) algorithm. Both algorithms ran on iPancreas comprising commercial glucose sensors, insulin pumps, and smartwatches. Participants executed 1 week run-in on usual therapy followed by exAPD or exMPC for one 12 h primary in-clinic session involving meals, exercise, and activities of daily living, and 2 free-living out-patient days. Primary outcome was time below range (<3·9 mmol/L) during the primary in-clinic session. Secondary outcome measures included mean glucose and time in range (3·9-10 mmol/L). This trial is registered with ClinicalTrials.gov, NCT04771403.

FINDINGS

Between April 13, 2021, and Oct 3, 2022, 27 participants (18 females) were enrolled into the study. There was no significant difference between exMPC (n=24) versus exAPD (n=22) in time below range (mean [SD] 1·3% [2·9] vs 2·5% [7·0]) or time in range (63·2% [23·9] vs 59·4% [23·1]) during the primary in-clinic session. In the 2 h period after start of in-clinic exercise, exMPC had significantly lower mean glucose (7·3 [1·6] vs 8·0 [1·7] mmol/L, p=0·023) and comparable time below range (1·4% [4·2] vs 4·9% [14·4]). Across the 76 h study, both algorithms achieved clinical time in range targets (71·2% [16] and 75·5% [11]) and time below range (1·0% [1·2] and 1·3% [2·2]), significantly lower than run-in period (2·4% [2·4], p=0·0004 vs exMPC; p=0·012 vs exAPD). No adverse events occurred.

INTERPRETATION

AIDs can integrate exercise data from smartwatches to inform insulin dosing and limit hypoglycaemia while improving glucose outcomes. Future AID systems that integrate exercise metrics from wearable fitness sensors may help people living with type 1 diabetes exercise safely by limiting hypoglycaemia.

FUNDING

JDRF Foundation and the Leona M and Harry B Helmsley Charitable Trust, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.

摘要

背景

运动可以迅速降低 1 型糖尿病患者的血糖。无处不在的可穿戴健身传感器尚未集成到自动化胰岛素输送 (AID) 系统中。我们假设 AID 可以使用实时可穿戴健身数据来自动调整胰岛素,以减少运动中和自由生活条件下的低血糖,与不使用健身数据自动调整的 AID 相比。

方法

我们的研究人群包括来自美国俄勒冈健康与科学大学哈罗德·施尼策糖尿病健康中心诊所的 21-50 岁的 1 型糖尿病患者,他们参加了一项为期 76 小时的单中心、两臂随机(4 块随机)、非盲交叉研究,使用(1)一种 AID,该 AID 使用基于运动的自适应比例微分 (exAPD) 算法检测运动、提示用户并在运动期间关闭胰岛素,或(2)一种 AID,该 AID 使用实时运动感知模型预测控制 (exMPC) 算法通过智能手表自动调整胰岛素。两种算法都在 iPancreas 上运行,该系统由商业血糖传感器、胰岛素泵和智能手表组成。参与者在常规治疗的 1 周适应期后,进行为期 12 小时的主要门诊就诊,包括膳食、运动和日常生活活动,以及 2 天的门诊治疗。主要结局是在主要门诊就诊期间的血糖低于目标范围(<3.9mmol/L)。次要结局指标包括平均血糖和目标范围内的时间(3.9-10mmol/L)。该试验在 ClinicalTrials.gov 上注册,NCT04771403。

发现

2021 年 4 月 13 日至 2022 年 10 月 3 日期间,共有 27 名参与者(18 名女性)入组该研究。在主要门诊就诊期间,exMPC(n=24)与 exAPD(n=22)相比,血糖低于目标范围(平均[SD]1.3%[2.9]比 2.5%[7.0])或血糖在目标范围内的时间(63.2%[23.9]比 59.4%[23.1])没有显著差异。在门诊运动开始后的 2 小时内,exMPC 的平均血糖(7.3[1.6]比 8.0[1.7]mmol/L,p=0.023)和血糖低于目标范围的时间(1.4%[4.2]比 4.9%[14.4])明显更低。在整个 76 小时的研究中,两种算法均达到了临床目标范围内的时间(71.2%[16]和 75.5%[11])和血糖低于目标范围的时间(1.0%[1.2]和 1.3%[2.2]),明显低于适应期(2.4%[2.4],p=0.0004 与 exMPC;p=0.012 与 exAPD)。没有发生不良事件。

解释

AID 可以整合来自智能手表的运动数据,以告知胰岛素剂量并在改善血糖结果的同时限制低血糖。未来将可穿戴健身传感器的运动指标集成到 AID 系统中,可能有助于 1 型糖尿病患者通过限制低血糖来安全运动。

资助

JDRF 基金会和 Leona M 和 Harry B Helmsley 慈善信托基金、美国国立卫生研究院、国家糖尿病、消化和肾脏疾病研究所。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c390/10557965/6b02ea134f3d/nihms-1926981-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验