Suppr超能文献

门诊患者随机交叉比较:带每周数据驱动自适应的区域模型预测控制自动胰岛素输送与传感器增强型泵——国际糖尿病闭环试验 4 的结果。

Outpatient Randomized Crossover Comparison of Zone Model Predictive Control Automated Insulin Delivery with Weekly Data Driven Adaptation Versus Sensor-Augmented Pump: Results from the International Diabetes Closed-Loop Trial 4.

机构信息

Sansum Diabetes Research Institute, Santa Barbara, California, USA.

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.

出版信息

Diabetes Technol Ther. 2022 Sep;24(9):635-642. doi: 10.1089/dia.2022.0084. Epub 2022 Jun 2.

Abstract

Automated insulin delivery (AID) systems have proven effective in increasing time-in-range during both clinical trials and real-world use. Further improvements in outcomes for single-hormone (insulin only) AID may be limited by suboptimal insulin delivery settings. Adults (≥18 years of age) with type 1 diabetes were randomized to either sensor-augmented pump (SAP) (inclusive of predictive low-glucose suspend) or adaptive zone model predictive control AID for 13 weeks, then crossed over to the other arm. Each week, the AID insulin delivery settings were sequentially and automatically updated by an adaptation system running on the study phone. Primary outcome was sensor glucose time-in-range 70-180 mg/dL, with noninferiority in percent time below 54 mg/dL as a hierarchical outcome. Thirty-five participants completed the trial (mean age 39 ± 16 years, HbA1c at enrollment 6.9% ± 1.0%). Mean time-in-range 70-180 mg/dL was 66% with SAP versus 69% with AID (mean adjusted difference +2% [95% confidence interval: -1% to +6%],  = 0.22). Median time <70 mg/dL improved from 3.0% with SAP to 1.6% with AID (-1.5% [-2.4% to -0.5%],  = 0.002). The adaptation system decreased initial basal rates by a median of 4% (-8%, 16%) and increased initial carbohydrate ratios by a median of 45% (32%, 59%) after 13 weeks. Automated adaptation of insulin delivery settings with AID use did not significantly improve time-in-range in this very well-controlled population. Additional study and further refinement of the adaptation system are needed, especially in populations with differing degrees of baseline glycemic control, who may show larger benefits from adaptation.

摘要

自动胰岛素输送(AID)系统在临床试验和实际应用中已被证明能有效增加时间达标率。对于单激素(仅胰岛素)AID,进一步改善结果可能受到胰岛素输送设定不理想的限制。

将 18 岁及以上的 1 型糖尿病患者随机分为传感器增强型泵(SAP)(包括预测性低血糖暂停)或适应性区域模型预测性控制 AID 组,各治疗 13 周,然后交叉至另一组。每周,通过在研究手机上运行的适应系统,自动顺序更新 AID 胰岛素输送设定。主要结局为传感器血糖 70-180mg/dL 时间达标率,低于 54mg/dL 的时间百分比不劣效性为分层结局。

35 名参与者完成了试验(平均年龄 39±16 岁,入组时 HbA1c 为 6.9%±1.0%)。SAP 组的平均 70-180mg/dL 时间达标率为 66%,AID 组为 69%(平均调整差异+2%[95%置信区间:-1%至+6%],=0.22)。SAP 组的<70mg/dL 时间中位数从 3.0%改善至 AID 组的 1.6%(-1.5%[-2.4%至-0.5%],=0.002)。适应系统在 13 周后将初始基础率中位数降低了 4%(-8%,16%),并将初始碳水化合物比值中位数增加了 45%(32%,59%)。

在这个控制非常好的人群中,使用 AID 自动调整胰岛素输送设定并未显著改善时间达标率。需要进一步研究和进一步完善适应系统,特别是在基线血糖控制程度不同的人群中,他们可能会从适应中获益更大。

相似文献

2
Outpatient Randomized Crossover Automated Insulin Delivery Versus Conventional Therapy with Induced Stress Challenges.
Diabetes Technol Ther. 2022 May;24(5):338-349. doi: 10.1089/dia.2021.0436. Epub 2022 Apr 25.

引用本文的文献

1
From Microbial Switches to Metabolic Sensors: Rewiring the Gut-Brain Kynurenine Circuit.
Biomedicines. 2025 Aug 19;13(8):2020. doi: 10.3390/biomedicines13082020.
3
Glucose Rate-of-Change and Insulin-on-Board Jointly Weighted Zone Model Predictive Control.
IEEE Trans Control Syst Technol. 2023 Sep;31(5):2261-2274. doi: 10.1109/tcst.2023.3291573. Epub 2023 Jul 31.
4
Safety and Feasibility Evaluation of Automated User Profile Settings Initialization and Adaptation With Control-IQ Technology.
J Diabetes Sci Technol. 2024 Nov;18(6):1281-1287. doi: 10.1177/19322968241229074. Epub 2024 Feb 7.
7
Developing the UVA/Padova Type 1 Diabetes Simulator: Modeling, Validation, Refinements, and Utility.
J Diabetes Sci Technol. 2023 Nov;17(6):1493-1505. doi: 10.1177/19322968231195081. Epub 2023 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验