Yang Mingmei, Zhang Xiaolei, Zhou Chao, Du Yuanyun, Zhou Mengyuan, Zhang Wenting
Department of Dermatology, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, People's Republic of China.
Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, People's Republic of China.
Clin Cosmet Investig Dermatol. 2025 May 1;18:1071-1085. doi: 10.2147/CCID.S510044. eCollection 2025.
Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disorder with a complex pathogenesis involving genetic predisposition, environmental factors, and immune dysregulation. This study aimed to investigate key differentially expressed genes (DEGs) in AD and their association with immune cell infiltration patterns.
The GSE32924 dataset comprises gene expression data from 25 AD samples and 8 control samples. Differential expression analysis was performed using the R package limma. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using clusterProfiler. Weighted gene co-expression network analysis (WGCNA) was employed to identify gene modules. Least Absolute Shrinkage and Selection Operator (LASSO) regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to screen hub genes. Immune cell infiltration was evaluated using CIBERSORT. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to validate DEG expression in peripheral blood samples from AD patients and healthy controls. Potential microRNA (miRNA)-messenger RNA (mRNA) and miRNA-long non-coding RNA (lncRNA) interactions were predicted using miRanda and TargetScan tools.
We identified 381 DEGs (217 upregulated, 164 downregulated). GO analysis revealed enrichment in skin barrier formation, epidermal development, and inflammatory response. KEGG analysis showed significant involvement of sphingolipid metabolism and Toll-like receptor signaling pathways. Five hub genes (ATP6V1A, CLDN23, ECSIT, LRFN5, USP16) were identified. Immune cell infiltration demonstrated significant differences in activated dendritic cells (aDCs) and regulatory T cells (Tregs) between AD and controls. RT-qPCR confirmed elevated ECSIT and decreased LRFN5 and USP16 expression in AD patients (P < 0.05). A competing endogenous RNA (ceRNA) network involving lncRNA-miRNA-mRNA interactions for the key gene ECSIT was also constructed.
ECSIT, LRFN5, and USP16 represent promising diagnostic biomarkers for AD and are involved in immune cell infiltration, providing new insights into AD pathogenesis.
特应性皮炎(AD)是一种常见的慢性炎症性皮肤病,其发病机制复杂,涉及遗传易感性、环境因素和免疫失调。本研究旨在调查AD中关键的差异表达基因(DEGs)及其与免疫细胞浸润模式的关联。
GSE32924数据集包含来自25个AD样本和8个对照样本的基因表达数据。使用R包limma进行差异表达分析。使用clusterProfiler进行基因本体(GO)和京都基因与基因组百科全书(KEGG)通路富集分析。采用加权基因共表达网络分析(WGCNA)来识别基因模块。使用最小绝对收缩和选择算子(LASSO)回归及支持向量机递归特征消除(SVM-RFE)算法筛选枢纽基因。使用CIBERSORT评估免疫细胞浸润。进行逆转录定量聚合酶链反应(RT-qPCR)以验证AD患者和健康对照外周血样本中DEG的表达。使用miRanda和TargetScan工具预测潜在的微小RNA(miRNA)-信使核糖核酸(mRNA)和miRNA-长链非编码核糖核酸(lncRNA)相互作用。
我们鉴定出381个DEGs(217个上调,164个下调)。GO分析显示在皮肤屏障形成、表皮发育和炎症反应方面富集。KEGG分析表明鞘脂代谢和Toll样受体信号通路有显著参与。鉴定出5个枢纽基因(ATP6V1A、CLDN23、ECSIT、LRFN5、USP16)。免疫细胞浸润显示AD与对照之间活化树突状细胞(aDCs)和调节性T细胞(Tregs)存在显著差异。RT-qPCR证实AD患者中ECSIT表达升高,LRFN5和USP16表达降低(P < 0.05)。还构建了一个涉及关键基因ECSIT的lncRNA-miRNA-mRNA相互作用的竞争性内源RNA(ceRNA)网络。
ECSIT、LRFN5和USP16是有前景的AD诊断生物标志物,参与免疫细胞浸润,为AD发病机制提供了新见解。