Suppr超能文献

rPIMS:一个用于利用基因组数据和机器学习方法对家畜品种进行精准识别和建模的ShinyR软件包。

rPIMS: a ShinyR package for the precision identification and modelling of livestock breeds using genomic data and machine learning approaches.

作者信息

Zhao Yuhetian, Liu Xuexue, Liang Benmeng, Jiang Lin

机构信息

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, People's Republic of China.

Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS UMR5288, Université Paul Sabatier, Toulouse 31000, France.

出版信息

Bioinform Adv. 2025 Apr 7;5(1):vbaf077. doi: 10.1093/bioadv/vbaf077. eCollection 2025.

Abstract

SUMMARY

Accurate breed identification serves is a crucial cornerstone for the conservation and utilization of livestock and poultry genetic resources. The identification of breeds based on a variety of information sources and analytical methods has been extensively applied in the domain of animal genetics and breeding. Recently, the integration of large-scale genomic data with machine learning has become increasingly prevalent for breed identification tasks. However, such projects typically require extensive sequencing data and expertise in bioinformatics. To address this, we introduce rPIMS, a comprehensive tool designed to simplify breed identification and genetic analysis. With intuitive modules for data input, dimensionality reduction, phylogenetic tree construction, population structure analysis, and machine learning-based classification, rPIMS has the capacity to streamlines the analytical process for researchers. It promotes collaboration, facilitates efficient data sharing, and enhances the ability to identify and report genetic diversity and evolutionary relationships among livestock breeds. We performed a validation analysis to confirm that rPIMS achieved 100% classification accuracy in distinguishing 10 breeds using only 860 SNPs. In summary, rPIMS significantly simplifies complex model-building processes, making breed classification and genetic structure visualization accessible and intuitive to users.

AVAILABILITY AND IMPLEMENTATION

rPIMS is a Shiny R application designed for breed identification in livestock using genomic data and machine learning, accessible through an intuitive graphical user interface. It is freely available under the GNU Public License on GitHub: https://github.com/Werewolfzy/rPIMS.

摘要

摘要

准确的品种鉴定是畜禽遗传资源保护和利用的关键基石。基于多种信息来源和分析方法的品种鉴定已在动物遗传育种领域得到广泛应用。近年来,大规模基因组数据与机器学习的整合在品种鉴定任务中越来越普遍。然而,此类项目通常需要大量的测序数据和生物信息学专业知识。为了解决这个问题,我们引入了rPIMS,这是一个旨在简化品种鉴定和遗传分析的综合工具。rPIMS具有直观的数据输入、降维、系统发育树构建、群体结构分析和基于机器学习的分类模块,能够为研究人员简化分析过程。它促进了合作,便于高效的数据共享,并增强了识别和报告畜禽品种间遗传多样性和进化关系的能力。我们进行了一项验证分析,以确认rPIMS仅使用860个单核苷酸多态性(SNP)就能在区分10个品种时达到100%的分类准确率。总之,rPIMS显著简化了复杂的模型构建过程,使品种分类和遗传结构可视化对用户来说变得容易理解且直观。

可用性与实施

rPIMS是一个用于利用基因组数据和机器学习进行畜禽品种鉴定的Shiny R应用程序,可通过直观的图形用户界面访问。它在GitHub上根据GNU公共许可证免费提供:https://github.com/Werewolfzy/rPIMS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e042/12052404/592bceff19e1/vbaf077f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验