Suppr超能文献

通过脑电图动态进行脑区特异性癫痫发作检测:整合频谱特征、SMOTE和长短期记忆网络

Brain-region specific epileptic seizure detection through EEG dynamics: integrating spectral features, SMOTE and long short-term memory networks.

作者信息

Dokare Indu, Gupta Sudha

机构信息

Department of Electronics Engineering, K. J. Somaiya School of Engineering (Formerly K. J. Somaiya College of Engineering), Somaiya Vidyavihar University, Mumbai, Maharashtra 400077 India.

Department of Computer Engineering, Vivekanand Education Society's Institute of Technology, Mumbai, Maharashtra 400074 India.

出版信息

Cogn Neurodyn. 2025 Dec;19(1):67. doi: 10.1007/s11571-025-10250-0. Epub 2025 May 3.

Abstract

Investigating neural dynamics through EEG signals offers valuable insights into brain activity, especially for automated seizure detection. The identification of epileptogenic zones is crucial for effective epilepsy treatment, particularly in surgical planning. This work introduces a novel method for seizure detection using EEG signals, designed to benefit clinicians by integrating spectral features with Long Short-Term Memory (LSTM) networks, enhanced by brain region-specific analysis. This research work captures critical frequency domain characteristics by extracting pivotal spectral features from EEG data, thereby improving the signal representation for LSTM networks. Additionally, this proposed work has employed the Synthetic Minority Over-sampling Technique (SMOTE) to handle the class imbalance problem. Furthermore, a comprehensive spatial analysis of EEG signals is performed to evaluate performance variations across distinct brain regions, enabling targeted region-wise analysis. This strategy effectively reduces the number of channels required, minimizing the need to process all 22 channels specified in the CHB-MIT dataset, thus significantly decreasing computational complexity while preserving high seizure detection performance. This work has obtained a mean value of accuracy of 95.43%, precision of 95.46%, sensitivity of 95.59%, F1-score of 95.48%, and specificity of 95.25% for the brain region providing the best performance for seizure discrimination. The results demonstrate that integrating spectral features and LSTM, augmented by spatial insights, enhances seizure detection performance and hence assists in identifying epileptogenic regions. This tool enhances clinical applications by improving diagnostic precision, personalized treatment strategies, and supporting precise surgical planning for epilepsy, ensuring safer resection and better outcomes.

摘要

通过脑电图(EEG)信号研究神经动力学,能为大脑活动提供有价值的见解,特别是在自动癫痫检测方面。确定致痫区对于有效的癫痫治疗至关重要,尤其是在手术规划中。这项工作引入了一种利用EEG信号进行癫痫检测的新方法,旨在通过将频谱特征与长短期记忆(LSTM)网络相结合,并通过特定脑区分析加以强化,从而使临床医生受益。这项研究工作通过从EEG数据中提取关键频谱特征来捕捉关键的频域特征,从而改善LSTM网络的信号表示。此外,这项提议的工作采用了合成少数过采样技术(SMOTE)来处理类别不平衡问题。此外,还对EEG信号进行了全面的空间分析,以评估不同脑区的性能差异,从而实现有针对性的区域分析。这种策略有效地减少了所需的通道数量,将处理CHB - MIT数据集中指定的所有22个通道的需求降至最低,从而在保持高癫痫检测性能的同时显著降低计算复杂度。对于在癫痫辨别方面表现最佳的脑区,这项工作获得的准确率平均值为95.43%,精确率为95.46%,灵敏度为95.59%,F1分数为95.48%,特异性为95.25%。结果表明,将频谱特征和LSTM相结合,并通过空间见解加以增强,可提高癫痫检测性能,从而有助于识别致痫区域。该工具通过提高诊断精度、个性化治疗策略以及支持精确的癫痫手术规划,增强了临床应用,确保更安全的切除和更好的治疗效果。

相似文献

2
Shap-driven explainable AI with simulated annealing for optimized seizure detection using multichannel EEG signal.
Cogn Neurodyn. 2025 Dec;19(1):85. doi: 10.1007/s11571-025-10269-3. Epub 2025 Jun 5.
3
Directionality of neural activity in and out of the seizure onset zone in focal epilepsy.
Netw Neurosci. 2025 Jun 30;9(2):798-823. doi: 10.1162/netn_a_00454. eCollection 2025.
4
GAN-enhanced deep learning for improved Alzheimer's disease classification and longitudinal brain change analysis.
Front Med (Lausanne). 2025 Jun 17;12:1587026. doi: 10.3389/fmed.2025.1587026. eCollection 2025.
5
Epileptic seizures diagnosis and prognosis from EEG signals using heterogeneous graph neural network.
PeerJ Comput Sci. 2025 Apr 22;11:e2765. doi: 10.7717/peerj-cs.2765. eCollection 2025.
7
Improving EEG based brain computer interface emotion detection with EKO ALSTM model.
Sci Rep. 2025 Jul 1;15(1):20727. doi: 10.1038/s41598-025-07438-z.
9
Optimized seizure detection leveraging band-specific insights from limited EEG channels.
Health Inf Sci Syst. 2025 Mar 19;13(1):30. doi: 10.1007/s13755-025-00348-4. eCollection 2025 Dec.
10
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.
Comput Methods Programs Biomed. 2025 Jun 21;269:108899. doi: 10.1016/j.cmpb.2025.108899.

本文引用的文献

1
Enhancing non-invasive pre-surgical evaluation through functional connectivity and graph theory in drug-resistant focal epilepsy.
J Neurosci Methods. 2025 Jan;413:110300. doi: 10.1016/j.jneumeth.2024.110300. Epub 2024 Oct 16.
2
Defining the Temporal and Occipital Lobes: Cadaveric Study with Application to Neurosurgery of the Inferior Brain.
World Neurosurg. 2024 Mar;183:e540-e548. doi: 10.1016/j.wneu.2023.12.139. Epub 2023 Dec 30.
3
A Deep Learning Approach for Automatic Seizure Detection in Children With Epilepsy.
Front Comput Neurosci. 2021 Apr 8;15:650050. doi: 10.3389/fncom.2021.650050. eCollection 2021.
4
Localization of epileptic seizure focus by computerized analysis of fMRI recordings.
Brain Inform. 2020 Oct 31;7(1):13. doi: 10.1186/s40708-020-00114-0.
5
Scalp EEG classification using deep Bi-LSTM network for seizure detection.
Comput Biol Med. 2020 Sep;124:103919. doi: 10.1016/j.compbiomed.2020.103919. Epub 2020 Jul 18.
6
The Epidemiology of Epilepsy.
Neuroepidemiology. 2020;54(2):185-191. doi: 10.1159/000503831. Epub 2019 Dec 18.
7
A Multi-View Deep Learning Framework for EEG Seizure Detection.
IEEE J Biomed Health Inform. 2019 Jan;23(1):83-94. doi: 10.1109/JBHI.2018.2871678.
8
Automatic seizure detection using three-dimensional CNN based on multi-channel EEG.
BMC Med Inform Decis Mak. 2018 Dec 7;18(Suppl 5):111. doi: 10.1186/s12911-018-0693-8.
10
EEG signal analysis: a survey.
J Med Syst. 2010 Apr;34(2):195-212. doi: 10.1007/s10916-008-9231-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验