Dokare Indu, Gupta Sudha
Department of Electronics Engineering, K. J. Somaiya School of Engineering (Formerly K. J. Somaiya College of Engineering), Somaiya Vidyavihar University, Mumbai, Maharashtra 400077 India.
Department of Computer Engineering, Vivekanand Education Society's Institute of Technology, Mumbai, Maharashtra 400074 India.
Cogn Neurodyn. 2025 Dec;19(1):67. doi: 10.1007/s11571-025-10250-0. Epub 2025 May 3.
Investigating neural dynamics through EEG signals offers valuable insights into brain activity, especially for automated seizure detection. The identification of epileptogenic zones is crucial for effective epilepsy treatment, particularly in surgical planning. This work introduces a novel method for seizure detection using EEG signals, designed to benefit clinicians by integrating spectral features with Long Short-Term Memory (LSTM) networks, enhanced by brain region-specific analysis. This research work captures critical frequency domain characteristics by extracting pivotal spectral features from EEG data, thereby improving the signal representation for LSTM networks. Additionally, this proposed work has employed the Synthetic Minority Over-sampling Technique (SMOTE) to handle the class imbalance problem. Furthermore, a comprehensive spatial analysis of EEG signals is performed to evaluate performance variations across distinct brain regions, enabling targeted region-wise analysis. This strategy effectively reduces the number of channels required, minimizing the need to process all 22 channels specified in the CHB-MIT dataset, thus significantly decreasing computational complexity while preserving high seizure detection performance. This work has obtained a mean value of accuracy of 95.43%, precision of 95.46%, sensitivity of 95.59%, F1-score of 95.48%, and specificity of 95.25% for the brain region providing the best performance for seizure discrimination. The results demonstrate that integrating spectral features and LSTM, augmented by spatial insights, enhances seizure detection performance and hence assists in identifying epileptogenic regions. This tool enhances clinical applications by improving diagnostic precision, personalized treatment strategies, and supporting precise surgical planning for epilepsy, ensuring safer resection and better outcomes.
通过脑电图(EEG)信号研究神经动力学,能为大脑活动提供有价值的见解,特别是在自动癫痫检测方面。确定致痫区对于有效的癫痫治疗至关重要,尤其是在手术规划中。这项工作引入了一种利用EEG信号进行癫痫检测的新方法,旨在通过将频谱特征与长短期记忆(LSTM)网络相结合,并通过特定脑区分析加以强化,从而使临床医生受益。这项研究工作通过从EEG数据中提取关键频谱特征来捕捉关键的频域特征,从而改善LSTM网络的信号表示。此外,这项提议的工作采用了合成少数过采样技术(SMOTE)来处理类别不平衡问题。此外,还对EEG信号进行了全面的空间分析,以评估不同脑区的性能差异,从而实现有针对性的区域分析。这种策略有效地减少了所需的通道数量,将处理CHB - MIT数据集中指定的所有22个通道的需求降至最低,从而在保持高癫痫检测性能的同时显著降低计算复杂度。对于在癫痫辨别方面表现最佳的脑区,这项工作获得的准确率平均值为95.43%,精确率为95.46%,灵敏度为95.59%,F1分数为95.48%,特异性为95.25%。结果表明,将频谱特征和LSTM相结合,并通过空间见解加以增强,可提高癫痫检测性能,从而有助于识别致痫区域。该工具通过提高诊断精度、个性化治疗策略以及支持精确的癫痫手术规划,增强了临床应用,确保更安全的切除和更好的治疗效果。