Suppr超能文献

优化中风风险预测:一种基于主要数据集驱动的可解释人工智能集成分类器。

Optimizing Stroke Risk Prediction: A Primary Dataset-Driven Ensemble Classifier With Explainable Artificial Intelligence.

作者信息

Hossain Md Maruf, Ahmed Md Mahfuz, Rakib Md Rakibul Hasan, Zia Mohammad Osama, Hasan Rakib, Islam Md Rakibul, Islam Md Shohidul, Alam Md Shahariar, Islam Md Khairul

机构信息

Department of Biomedical Engineering Islamic University Kushtia Bangladesh.

Bio-Imaging Research Laboratory, BME Islamic University Kushtia Bangladesh.

出版信息

Health Sci Rep. 2025 May 5;8(5):e70799. doi: 10.1002/hsr2.70799. eCollection 2025 May.

Abstract

BACKGROUND AND AIMS

Stroke remains a leading cause of mortality and long-term disability worldwide, presenting a significant global health challenge. Effective early prediction models are essential for reducing its impact. This study introduces a novel ensemble method for predicting stroke using two datasets: a primary dataset collected from a hospital, containing medical histories and clinical parameters, and a secondary dataset.

METHODS

We applied several preprocessing techniques, including outlier detection, data normalization, k-means clustering, and missing value detection, to refine the datasets. A novel ensemble classifier was developed, combining AdaBoost, Gradient Boosting Machine (GBM), Multilayer Perceptron (MLP), and Random Forest (RF) algorithms to enhance predictive accuracy. Additionally, Explainable Artificial Intelligence (XAI) techniques such as SHAP and LIME were integrated to elucidate key features influencing stroke prediction.

RESULTS

The proposed ensemble classifier achieved an accuracy of 95% for the secondary dataset and 80.36% for the primary dataset. Comparative analysis with other machine learning models highlighted the superior performance of the ensemble approach. The integration of XAI further provided insights into the critical indicators influencing stroke classification, improving model interpretability and decision-making.

CONCLUSION

Our study demonstrates that the novel ensemble classifier, supported by effective preprocessing and XAI techniques, is a powerful tool for stroke prediction. The high accuracy rates achieved validate its effectiveness and potential for practical clinical application. Future work will focus on incorporating deep learning techniques and medical imaging to further improve classification accuracy and model performance.

摘要

背景与目的

中风仍然是全球范围内导致死亡和长期残疾的主要原因,是一项重大的全球健康挑战。有效的早期预测模型对于降低其影响至关重要。本研究引入了一种新颖的集成方法,使用两个数据集来预测中风:一个是从医院收集的主要数据集,包含病史和临床参数,另一个是次要数据集。

方法

我们应用了几种预处理技术,包括异常值检测、数据归一化、k均值聚类和缺失值检测,以完善数据集。开发了一种新颖的集成分类器,结合了AdaBoost、梯度提升机(GBM)、多层感知器(MLP)和随机森林(RF)算法,以提高预测准确性。此外,还集成了诸如SHAP和LIME等可解释人工智能(XAI)技术,以阐明影响中风预测的关键特征。

结果

所提出的集成分类器在次要数据集上的准确率达到了95%,在主要数据集上的准确率为80.36%。与其他机器学习模型的比较分析突出了集成方法的优越性能。XAI的集成进一步提供了对影响中风分类的关键指标的见解,提高了模型的可解释性和决策能力。

结论

我们的研究表明,在有效的预处理和XAI技术支持下的新颖集成分类器是中风预测的有力工具。所取得的高准确率验证了其有效性和在实际临床应用中的潜力。未来的工作将集中于纳入深度学习技术和医学成像,以进一步提高分类准确率和模型性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2114/12052519/3505d00fbc6f/HSR2-8-e70799-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验