Suppr超能文献

通过整合多个分类器来优化脑卒中和危急疾病的早期诊断。

Optimizing early diagnosis by integrating multiple classifiers for predicting brain stroke and critical diseases.

机构信息

Department of Computer Engineering and Technology, Guru Nanak Dev University, Amritsar, India.

Department of Computer Science, Guru Nanak Dev University, Amritsar, India.

出版信息

Sci Rep. 2024 Nov 18;14(1):28429. doi: 10.1038/s41598-024-80129-3.

Abstract

Machine learning has gained attention in the medical field. Continuous efforts are being made to develop robust models for early prognosis purposes. The brain is the most pivotal organ in the human body. A brain stroke is generally caused by a blockage in the brain arteries. A brain stroke is one of the primary reasons for death. Therefore, early prediction of diseases like brain stroke, heart attack can significantly help in making decisions for doctors. The research study aims to find a robust and potential technique for the early prediction of brain stroke, Alzheimer's, heart attack, cancer, Parkinson's and potentially reducing the incidence of severe post complications of the mentioned diseases. By considering the five datasets as input, machine learning models have been trained for the research study. Early prediction of brain stroke has been done using eight individual classifiers along with 56 other models which are designed by merging the pairs of individual models using soft and hard voting for brain stroke and eight individual classifiers have been used for early prediction of heart attack, cancer, Alzheimer and Parkinson's. After analyzing the results of each classifier for each disease, the proposed method, which is a pair of random forest and decision tree using a hard voting method for early brain stroke prediction, achieves the highest accuracy of 99%, which is better than all classifiers. Along with accuracy, the proposed method attained a value of 98% in precision, an outstanding 100% in recall, and 99% in F1 score. XGBoost performed best for cancer, Parkinson's, Alzeihmer's and Bernoulli naive bayes performed best in case of Heart attack .Upon comparing the values of these performance metrics, they outshine all the other model's values.

摘要

机器学习在医学领域引起了关注。人们不断努力开发用于早期预后的强大模型。大脑是人体最重要的器官。中风通常是由于大脑动脉阻塞引起的。中风是死亡的主要原因之一。因此,早期预测中风、心脏病等疾病,对医生的决策有很大帮助。本研究旨在寻找一种强大而有潜力的技术,用于早期预测中风、阿尔茨海默病、心脏病、癌症、帕金森病,并有可能降低这些疾病严重并发症的发生率。研究考虑了五个数据集作为输入,使用机器学习模型进行了研究。使用八个个体分类器和其他 56 个模型对中风进行了早期预测,这些模型是通过使用软投票和硬投票合并个体模型对中风进行设计的。对于中风的早期预测,使用了八个个体分类器。对于心脏病、癌症、阿尔茨海默病和帕金森病的早期预测,使用了八种个体分类器。在分析了每种疾病的每个分类器的结果后,提出了一种使用硬投票法对早期中风进行预测的随机森林和决策树对,其准确率达到 99%,优于所有分类器。在准确性方面,该方法的精度值为 98%,召回率为 100%,F1 得分为 99%。XGBoost 在癌症、帕金森病、阿尔茨海默病方面表现最佳,而 Bernoulli 朴素贝叶斯在心脏病方面表现最佳。通过比较这些性能指标的值,它们优于所有其他模型的值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/050f/11574051/17eb87a00676/41598_2024_80129_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验