Wu Xin, Zhu Xueqi, Wang Shuaishuai, Tang Xuehuang, Lang Taifu, Belyaev Victor, Abduev Aslan, Kazak Alexander, Lin Chang, Yan Qun, Sun Jie
College of Physics and Information Engineering, Fuzhou University, Fuzhou 350100, China.
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.
Materials (Basel). 2025 Apr 14;18(8):1783. doi: 10.3390/ma18081783.
Micro Light Emitting Diode (Micro-LED) technology, characterized by exceptional brightness, low power consumption, fast response, and long lifespan, holds significant potential for next-generation displays, yet its commercialization hinges on resolving challenges in high-density interconnect fabrication, particularly micrometer-scale bump formation. Traditional fabrication approaches such as evaporation enable precise bump control but face scalability and cost limitations, while electroplating offers lower costs and higher throughput but suffers from substrate conductivity requirements and uneven current density distributions that compromise bump-height uniformity. Emerging alternatives include electroless plating, which achieves uniform metal deposition on non-conductive substrates through autocatalytic reactions albeit with slower deposition rates; ball mounting and dip soldering, which streamline processes via automated solder jetting or alloy immersion but struggle with bump miniaturization and low yield; and photosensitive conductive polymers that simplify fabrication via photolithography-patterned composites but lack validated long-term stability. Persistent challenges in achieving micrometer-scale uniformity, thermomechanical stability, and environmental compatibility underscore the need for integrated hybrid processes, eco-friendly manufacturing protocols, and novel material innovations to enable ultra-high-resolution and flexible Micro-LED implementations. This review systematically compares conventional and emerging methodologies, identifies critical technological bottlenecks, and proposes strategic guidelines for industrial-scale production of high-density Micro-LED displays.
微发光二极管(Micro-LED)技术具有卓越的亮度、低功耗、快速响应和长寿命等特点,在下一代显示器领域具有巨大潜力,但其商业化取决于解决高密度互连制造中的挑战,特别是微米级凸块的形成。传统的制造方法,如蒸发法,能够实现精确的凸块控制,但面临可扩展性和成本限制;而电镀法成本较低且产量较高,但受到基板导电性要求和电流密度分布不均的影响,这会损害凸块高度的均匀性。新兴的替代方法包括化学镀,它通过自催化反应在非导电基板上实现均匀的金属沉积,尽管沉积速率较慢;球焊和浸焊,它们通过自动焊料喷射或合金浸渍简化工艺,但在凸块小型化和低良率方面存在困难;以及光敏导电聚合物,它们通过光刻图案化复合材料简化制造过程,但缺乏经过验证的长期稳定性。在实现微米级均匀性、热机械稳定性和环境兼容性方面持续存在的挑战凸显了对集成混合工艺、环保制造协议和新型材料创新的需求,以实现超高分辨率和柔性Micro-LED应用。本文系统地比较了传统方法和新兴方法,识别了关键的技术瓶颈,并为高密度Micro-LED显示器的工业规模生产提出了战略指导方针。