Chen Junyong, Pan Defang
School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, China.
Molecules. 2025 Apr 11;30(8):1709. doi: 10.3390/molecules30081709.
The inherent brittleness of silica aerogels has hindered their application in thermal protection systems. To overcome this limitation, we developed a silica/polyimide composite aerogel with a bio-inspired "pomegranate-like" structure through in situ gelation. The strategic integration of polyimide nanofibers into the silica matrix created an interlocking network that immobilized silica particles, effectively resolving the mechanical fragility. By modulating the polyimide precursor (polyamic acid) concentration to 0.08 g/cm through polyimide nanofiber reinforcement, the compressive strength reached 2.86 MPa-12 times greater than that of unmodified silica aerogel. The material demonstrated multifunctional performance: exceptional flame resistance (withstanding 1300 °C flame for 20 min with self-extinguishing behavior), high hydrophobicity (123° water contact angle), and ultralow thermal conductivity (0.035 W/(m·K)). This synergistic combination of tunable mechanics, thermal stability, and insulation properties positions the composite as an advanced solution for next-generation thermal protection materials.
二氧化硅气凝胶固有的脆性阻碍了它们在热防护系统中的应用。为了克服这一限制,我们通过原位凝胶化开发了一种具有仿生“石榴状”结构的二氧化硅/聚酰亚胺复合气凝胶。将聚酰亚胺纳米纤维战略性地整合到二氧化硅基质中,形成了一个互锁网络,固定了二氧化硅颗粒,有效解决了机械脆性问题。通过聚酰亚胺纳米纤维增强,将聚酰亚胺前体(聚酰胺酸)浓度调节至0.08 g/cm³,抗压强度达到2.86 MPa,比未改性的二氧化硅气凝胶高12倍。该材料表现出多功能性能:出色的阻燃性(在1300°C火焰中耐受20分钟并具有自熄行为)、高疏水性(123°水接触角)和超低热导率(0.035 W/(m·K))。这种可调力学性能、热稳定性和绝缘性能的协同组合使该复合材料成为下一代热防护材料的先进解决方案。